You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/swarms/agents/reasoning_agents.py

345 lines
13 KiB

"""
ReasoningAgentRouter: A flexible router for advanced reasoning agent swarms.
This module provides the ReasoningAgentRouter class, which enables dynamic selection and instantiation
of various advanced reasoning agent types (swarms) for complex problem-solving tasks. It supports
multiple reasoning strategies, including self-consistency, collaborative duo agents, iterative
reflection, knowledge prompting, and agent judging.
Key Features:
- Unified interface for multiple agent types (see `agent_types`)
- Caching of agent instances for efficiency and memory management
- Extensible factory-based architecture for easy addition of new agent types
- Batch and single-task execution
- Customizable agent configuration (model, prompt, memory, etc.)
Supported Agent Types:
- "reasoning-duo" / "reasoning-agent": Dual collaborative agent system
- "self-consistency" / "consistency-agent": Multiple independent solutions with consensus
- "ire" / "ire-agent": Iterative Reflective Expansion agent
- "ReflexionAgent": Reflexion agent with memory
- "GKPAgent": Generated Knowledge Prompting agent
- "AgentJudge": Agent judge for evaluation/critique
Example usage:
>>> router = ReasoningAgentRouter(swarm_type="self-consistency", num_samples=3)
>>> result = router.run("What is the capital of France?")
>>> print(result)
>>> # Batch mode
>>> results = router.batched_run(["2+2?", "3+3?"])
>>> print(results)
"""
import traceback
from typing import (
List,
Literal,
Optional,
)
from swarms.agents.consistency_agent import SelfConsistencyAgent
from swarms.agents.flexion_agent import ReflexionAgent
from swarms.agents.gkp_agent import GKPAgent
from swarms.agents.i_agent import (
IterativeReflectiveExpansion as IREAgent,
)
from swarms.agents.reasoning_duo import ReasoningDuo
from swarms.utils.output_types import OutputType
from swarms.agents.agent_judge import AgentJudge
#: Supported agent type literals for ReasoningAgentRouter
agent_types = Literal[
"reasoning-duo",
"self-consistency",
"ire",
"reasoning-agent",
"consistency-agent",
"ire-agent",
"ReflexionAgent",
"GKPAgent",
"AgentJudge",
]
class ReasoningAgentExecutorError(Exception):
"""
Exception raised when an error occurs during the execution of a reasoning agent.
"""
pass
class ReasoningAgentInitializationError(Exception):
"""
Exception raised when an error occurs during the initialization of a reasoning agent.
"""
pass
class ReasoningAgentRouter:
"""
A router for advanced reasoning agent swarms.
The ReasoningAgentRouter enables dynamic selection, instantiation, and caching of various
reasoning agent types ("swarms") for flexible, robust, and scalable problem-solving.
Args:
agent_name (str): Name identifier for the agent instance.
description (str): Description of the agent's capabilities.
model_name (str): The underlying language model to use.
system_prompt (str): System prompt for the agent.
max_loops (int): Maximum number of reasoning loops.
swarm_type (agent_types): Type of reasoning swarm to use.
num_samples (int): Number of samples for self-consistency or iterations.
output_type (OutputType): Format of the output.
num_knowledge_items (int): Number of knowledge items for GKP agent.
memory_capacity (int): Memory capacity for agents that support it.
eval (bool): Enable evaluation mode for self-consistency.
random_models_on (bool): Enable random model selection for diversity.
majority_voting_prompt (Optional[str]): Custom prompt for majority voting.
Example:
>>> router = ReasoningAgentRouter(swarm_type="reasoning-duo")
>>> result = router.run("Explain quantum entanglement.")
>>> print(result)
"""
def __init__(
self,
agent_name: str = "reasoning_agent",
description: str = "A reasoning agent that can answer questions and help with tasks.",
model_name: str = "gpt-4o-mini",
system_prompt: str = "You are a helpful assistant that can answer questions and help with tasks.",
max_loops: int = 1,
swarm_type: agent_types = "reasoning-duo",
num_samples: int = 1,
output_type: OutputType = "dict-all-except-first",
num_knowledge_items: int = 6,
memory_capacity: int = 6,
eval: bool = False,
random_models_on: bool = False,
majority_voting_prompt: Optional[str] = None,
reasoning_model_name: Optional[
str
] = "claude-3-5-sonnet-20240620",
):
"""
Initialize the ReasoningAgentRouter with the specified configuration.
See class docstring for parameter details.
"""
self.agent_name = agent_name
self.description = description
self.model_name = model_name
self.system_prompt = system_prompt
self.max_loops = max_loops
self.swarm_type = swarm_type
self.num_samples = num_samples
self.output_type = output_type
self.num_knowledge_items = num_knowledge_items
self.memory_capacity = memory_capacity
self.eval = eval
self.random_models_on = random_models_on
self.majority_voting_prompt = majority_voting_prompt
self.reasoning_model_name = reasoning_model_name
self.reliability_check()
def reliability_check(self):
if self.max_loops == 0:
raise ReasoningAgentInitializationError(
"ReasoningAgentRouter Error: Max loops must be greater than 0"
)
if self.model_name == "" or self.model_name is None:
raise ReasoningAgentInitializationError(
"ReasoningAgentRouter Error: Model name must be provided"
)
if self.swarm_type == "" or self.swarm_type is None:
raise ReasoningAgentInitializationError(
"ReasoningAgentRouter Error: Swarm type must be provided. This is the type of reasoning agent you want to use. For example, 'reasoning-duo' for a reasoning duo agent, 'self-consistency' for a self-consistency agent, 'ire' for an iterative reflective expansion agent, 'reasoning-agent' for a reasoning agent, 'consistency-agent' for a consistency agent, 'ire-agent' for an iterative reflective expansion agent, 'ReflexionAgent' for a reflexion agent, 'GKPAgent' for a generated knowledge prompting agent, 'AgentJudge' for an agent judge."
)
# Initialize the factory mapping dictionary
self.agent_factories = self._initialize_agent_factories()
def _initialize_agent_factories(self) -> None:
"""
Initialize the agent factory mapping dictionary, mapping various agent types to their respective creation functions.
This method replaces the original if-elif chain, making the code more maintainable and extensible.
"""
agent_factories = {
"reasoning-duo": self._create_reasoning_duo,
"reasoning-agent": self._create_reasoning_duo,
"self-consistency": self._create_consistency_agent,
"consistency-agent": self._create_consistency_agent,
"ire": self._create_ire_agent,
"ire-agent": self._create_ire_agent,
"AgentJudge": self._create_agent_judge,
"ReflexionAgent": self._create_reflexion_agent,
"GKPAgent": self._create_gkp_agent,
}
return agent_factories
def _create_reasoning_duo(self):
"""
Create an agent instance for the ReasoningDuo type.
Returns:
ReasoningDuo: An instance of the ReasoningDuo agent.
"""
return ReasoningDuo(
agent_name=self.agent_name,
agent_description=self.description,
model_name=[self.model_name, self.model_name],
system_prompt=self.system_prompt,
output_type=self.output_type,
reasoning_model_name=self.reasoning_model_name,
max_loops=self.max_loops,
)
def _create_consistency_agent(self):
"""
Create an agent instance for the SelfConsistencyAgent type.
Returns:
SelfConsistencyAgent: An instance of the SelfConsistencyAgent.
"""
return SelfConsistencyAgent(
name=self.agent_name,
description=self.description,
model_name=self.model_name,
system_prompt=self.system_prompt,
max_loops=self.max_loops,
num_samples=self.num_samples,
output_type=self.output_type,
eval=self.eval,
random_models_on=self.random_models_on,
majority_voting_prompt=self.majority_voting_prompt,
)
def _create_ire_agent(self):
"""
Create an agent instance for the IREAgent type.
Returns:
IREAgent: An instance of the IterativeReflectiveExpansion agent.
"""
return IREAgent(
agent_name=self.agent_name,
description=self.description,
model_name=self.model_name,
system_prompt=self.system_prompt,
max_loops=self.max_loops,
max_iterations=self.num_samples,
output_type=self.output_type,
)
def _create_agent_judge(self):
"""
Create an agent instance for the AgentJudge type.
Returns:
AgentJudge: An instance of the AgentJudge agent.
"""
return AgentJudge(
agent_name=self.agent_name,
model_name=self.model_name,
system_prompt=self.system_prompt,
max_loops=self.max_loops,
)
def _create_reflexion_agent(self):
"""
Create an agent instance for the ReflexionAgent type.
Returns:
ReflexionAgent: An instance of the ReflexionAgent.
"""
return ReflexionAgent(
agent_name=self.agent_name,
system_prompt=self.system_prompt,
model_name=self.model_name,
max_loops=self.max_loops,
memory_capacity=self.memory_capacity,
)
def _create_gkp_agent(self):
"""
Create an agent instance for the GKPAgent type.
Returns:
GKPAgent: An instance of the GKPAgent.
"""
return GKPAgent(
agent_name=self.agent_name,
model_name=self.model_name,
num_knowledge_items=self.num_knowledge_items,
)
def select_swarm(self):
"""
Select and initialize the appropriate reasoning swarm based on the specified swarm type.
Returns:
The selected reasoning swarm instance.
Raises:
ValueError: If the specified swarm type is invalid.
"""
try:
if self.swarm_type in self.agent_factories:
return self.agent_factories[self.swarm_type]()
else:
raise ReasoningAgentInitializationError(
f"ReasoningAgentRouter Error: Invalid swarm type: {self.swarm_type}"
)
except Exception as e:
raise ReasoningAgentInitializationError(
f"ReasoningAgentRouter Error: {e} Traceback: {traceback.format_exc()} If the error persists, please check the agent's configuration and try again. If you would like support book a call with our team at https://cal.com/swarms"
)
def run(self, task: str, *args, **kwargs):
"""
Execute the reasoning process of the selected swarm on a given task.
Args:
task (str): The task or question to be processed by the reasoning agent.
*args: Additional positional arguments for the agent's run method.
**kwargs: Additional keyword arguments for the agent's run method.
Returns:
The result of the reasoning process (format depends on agent and output_type).
"""
try:
swarm = self.select_swarm()
return swarm.run(task=task, *args, **kwargs)
except Exception as e:
raise ReasoningAgentExecutorError(
f"ReasoningAgentRouter Error: {e} Traceback: {traceback.format_exc()} If the error persists, please check the agent's configuration and try again. If you would like support book a call with our team at https://cal.com/swarms"
)
def batched_run(self, tasks: List[str], *args, **kwargs):
"""
Execute the reasoning process on a batch of tasks.
Args:
tasks (List[str]): The list of tasks to process.
*args: Additional positional arguments for the agent's run method.
**kwargs: Additional keyword arguments for the agent's run method.
Returns:
A list of reasoning process results for each task.
"""
results = []
for task in tasks:
results.append(self.run(task, *args, **kwargs))
return results