You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/tests/structs/test_agent.py

1335 lines
42 KiB

5 months ago
import json
import os
from unittest import mock
from unittest.mock import MagicMock, patch
import pytest
from dotenv import load_dotenv
4 months ago
from swarm_models import OpenAIChat
5 months ago
from swarms.structs.agent import Agent, stop_when_repeats
4 months ago
from swarms.utils.loguru_logger import logger
5 months ago
load_dotenv()
openai_api_key = os.getenv("OPENAI_API_KEY")
# Mocks and Fixtures
@pytest.fixture
def mocked_llm():
return OpenAIChat(
openai_api_key=openai_api_key,
)
@pytest.fixture
def basic_flow(mocked_llm):
return Agent(llm=mocked_llm, max_loops=5)
@pytest.fixture
def flow_with_condition(mocked_llm):
return Agent(
llm=mocked_llm,
max_loops=5,
stopping_condition=stop_when_repeats,
)
# Basic Tests
def test_stop_when_repeats():
assert stop_when_repeats("Please Stop now")
assert not stop_when_repeats("Continue the process")
def test_flow_initialization(basic_flow):
assert basic_flow.max_loops == 5
assert basic_flow.stopping_condition is None
assert basic_flow.loop_interval == 1
assert basic_flow.retry_attempts == 3
assert basic_flow.retry_interval == 1
assert basic_flow.feedback == []
assert basic_flow.memory == []
assert basic_flow.task is None
assert basic_flow.stopping_token == "<DONE>"
assert not basic_flow.interactive
def test_provide_feedback(basic_flow):
feedback = "Test feedback"
basic_flow.provide_feedback(feedback)
assert feedback in basic_flow.feedback
@patch("time.sleep", return_value=None) # to speed up tests
def test_run_without_stopping_condition(mocked_sleep, basic_flow):
response = basic_flow.run("Test task")
assert (
response == "Test task"
) # since our mocked llm doesn't modify the response
@patch("time.sleep", return_value=None) # to speed up tests
4 months ago
def test_run_with_stopping_condition(
mocked_sleep, flow_with_condition
):
5 months ago
response = flow_with_condition.run("Stop")
assert response == "Stop"
@patch("time.sleep", return_value=None) # to speed up tests
def test_run_with_exception(mocked_sleep, basic_flow):
basic_flow.llm.side_effect = Exception("Test Exception")
with pytest.raises(Exception, match="Test Exception"):
basic_flow.run("Test task")
def test_bulk_run(basic_flow):
inputs = [{"task": "Test1"}, {"task": "Test2"}]
responses = basic_flow.bulk_run(inputs)
assert responses == ["Test1", "Test2"]
# Tests involving file IO
def test_save_and_load(basic_flow, tmp_path):
file_path = tmp_path / "memory.json"
basic_flow.memory.append(["Test1", "Test2"])
basic_flow.save(file_path)
new_flow = Agent(llm=mocked_llm, max_loops=5)
new_flow.load(file_path)
assert new_flow.memory == [["Test1", "Test2"]]
# Environment variable mock test
def test_env_variable_handling(monkeypatch):
monkeypatch.setenv("API_KEY", "test_key")
assert os.getenv("API_KEY") == "test_key"
# TODO: Add more tests, especially edge cases and exception cases. Implement parametrized tests for varied inputs.
# Test initializing the agent with different stopping conditions
def test_flow_with_custom_stopping_condition(mocked_llm):
def stopping_condition(x):
return "terminate" in x.lower()
agent = Agent(
llm=mocked_llm,
max_loops=5,
stopping_condition=stopping_condition,
)
assert agent.stopping_condition("Please terminate now")
assert not agent.stopping_condition("Continue the process")
# Test calling the agent directly
def test_flow_call(basic_flow):
response = basic_flow("Test call")
assert response == "Test call"
# Test formatting the prompt
def test_format_prompt(basic_flow):
formatted_prompt = basic_flow.format_prompt(
"Hello {name}", name="John"
)
assert formatted_prompt == "Hello John"
# Test with max loops
@patch("time.sleep", return_value=None)
def test_max_loops(mocked_sleep, basic_flow):
basic_flow.max_loops = 3
response = basic_flow.run("Looping")
assert response == "Looping"
# Test stopping token
@patch("time.sleep", return_value=None)
def test_stopping_token(mocked_sleep, basic_flow):
basic_flow.stopping_token = "Terminate"
response = basic_flow.run("Loop until Terminate")
assert response == "Loop until Terminate"
# Test interactive mode
def test_interactive_mode(basic_flow):
basic_flow.interactive = True
assert basic_flow.interactive
# Test bulk run with varied inputs
def test_bulk_run_varied_inputs(basic_flow):
inputs = [
{"task": "Test1"},
{"task": "Test2"},
{"task": "Stop now"},
]
responses = basic_flow.bulk_run(inputs)
assert responses == ["Test1", "Test2", "Stop now"]
# Test loading non-existent file
def test_load_non_existent_file(basic_flow, tmp_path):
file_path = tmp_path / "non_existent.json"
with pytest.raises(FileNotFoundError):
basic_flow.load(file_path)
# Test saving with different memory data
def test_save_different_memory(basic_flow, tmp_path):
file_path = tmp_path / "memory.json"
basic_flow.memory.append(["Task1", "Task2", "Task3"])
basic_flow.save(file_path)
with open(file_path) as f:
data = json.load(f)
assert data == [["Task1", "Task2", "Task3"]]
# Test the stopping condition check
def test_check_stopping_condition(flow_with_condition):
assert flow_with_condition._check_stopping_condition(
"Stop this process"
)
assert not flow_with_condition._check_stopping_condition(
"Continue the task"
)
# Test without providing max loops (default value should be 5)
def test_default_max_loops(mocked_llm):
agent = Agent(llm=mocked_llm)
assert agent.max_loops == 5
# Test creating agent from llm and template
def test_from_llm_and_template(mocked_llm):
agent = Agent.from_llm_and_template(mocked_llm, "Test template")
assert isinstance(agent, Agent)
# Mocking the OpenAIChat for testing
@patch("swarms.models.OpenAIChat", autospec=True)
def test_mocked_openai_chat(MockedOpenAIChat):
llm = MockedOpenAIChat(openai_api_key=openai_api_key)
llm.return_value = MagicMock()
agent = Agent(llm=llm, max_loops=5)
agent.run("Mocked run")
assert MockedOpenAIChat.called
# Test retry attempts
@patch("time.sleep", return_value=None)
def test_retry_attempts(mocked_sleep, basic_flow):
basic_flow.retry_attempts = 2
basic_flow.llm.side_effect = [
Exception("Test Exception"),
"Valid response",
]
response = basic_flow.run("Test retry")
assert response == "Valid response"
# Test different loop intervals
@patch("time.sleep", return_value=None)
def test_different_loop_intervals(mocked_sleep, basic_flow):
basic_flow.loop_interval = 2
response = basic_flow.run("Test loop interval")
assert response == "Test loop interval"
# Test different retry intervals
@patch("time.sleep", return_value=None)
def test_different_retry_intervals(mocked_sleep, basic_flow):
basic_flow.retry_interval = 2
response = basic_flow.run("Test retry interval")
assert response == "Test retry interval"
# Test invoking the agent with additional kwargs
@patch("time.sleep", return_value=None)
def test_flow_call_with_kwargs(mocked_sleep, basic_flow):
4 months ago
response = basic_flow(
"Test call", param1="value1", param2="value2"
)
5 months ago
assert response == "Test call"
# Test initializing the agent with all parameters
def test_flow_initialization_all_params(mocked_llm):
agent = Agent(
llm=mocked_llm,
max_loops=10,
stopping_condition=stop_when_repeats,
loop_interval=2,
retry_attempts=4,
retry_interval=2,
interactive=True,
param1="value1",
param2="value2",
)
assert agent.max_loops == 10
assert agent.loop_interval == 2
assert agent.retry_attempts == 4
assert agent.retry_interval == 2
assert agent.interactive
# Test the stopping token is in the response
@patch("time.sleep", return_value=None)
def test_stopping_token_in_response(mocked_sleep, basic_flow):
response = basic_flow.run("Test stopping token")
assert basic_flow.stopping_token in response
@pytest.fixture
def flow_instance():
# Create an instance of the Agent class with required parameters for testing
# You may need to adjust this based on your actual class initialization
llm = OpenAIChat(
openai_api_key=openai_api_key,
)
agent = Agent(
llm=llm,
max_loops=5,
interactive=False,
dashboard=False,
dynamic_temperature=False,
)
return agent
def test_flow_run(flow_instance):
# Test the basic run method of the Agent class
response = flow_instance.run("Test task")
assert isinstance(response, str)
assert len(response) > 0
def test_flow_interactive_mode(flow_instance):
# Test the interactive mode of the Agent class
flow_instance.interactive = True
response = flow_instance.run("Test task")
assert isinstance(response, str)
assert len(response) > 0
def test_flow_dashboard_mode(flow_instance):
# Test the dashboard mode of the Agent class
flow_instance.dashboard = True
response = flow_instance.run("Test task")
assert isinstance(response, str)
assert len(response) > 0
def test_flow_autosave(flow_instance):
# Test the autosave functionality of the Agent class
flow_instance.autosave = True
response = flow_instance.run("Test task")
assert isinstance(response, str)
assert len(response) > 0
# Ensure that the state is saved (you may need to implement this logic)
assert flow_instance.saved_state_path is not None
def test_flow_response_filtering(flow_instance):
# Test the response filtering functionality
flow_instance.add_response_filter("filter_this")
response = flow_instance.filtered_run(
"This message should filter_this"
)
assert "filter_this" not in response
def test_flow_undo_last(flow_instance):
# Test the undo functionality
response1 = flow_instance.run("Task 1")
flow_instance.run("Task 2")
previous_state, message = flow_instance.undo_last()
assert response1 == previous_state
assert "Restored to" in message
def test_flow_dynamic_temperature(flow_instance):
# Test dynamic temperature adjustment
flow_instance.dynamic_temperature = True
response = flow_instance.run("Test task")
assert isinstance(response, str)
assert len(response) > 0
def test_flow_streamed_generation(flow_instance):
# Test streamed generation
response = flow_instance.streamed_generation("Generating...")
assert isinstance(response, str)
assert len(response) > 0
def test_flow_step(flow_instance):
# Test the step method
response = flow_instance.step("Test step")
assert isinstance(response, str)
assert len(response) > 0
def test_flow_graceful_shutdown(flow_instance):
# Test graceful shutdown
result = flow_instance.graceful_shutdown()
assert result is not None
# Add more test cases as needed to cover various aspects of your Agent class
def test_flow_max_loops(flow_instance):
# Test setting and getting the maximum number of loops
flow_instance.set_max_loops(10)
assert flow_instance.get_max_loops() == 10
def test_flow_autosave_path(flow_instance):
# Test setting and getting the autosave path
flow_instance.set_autosave_path("text.txt")
assert flow_instance.get_autosave_path() == "txt.txt"
def test_flow_response_length(flow_instance):
# Test checking the length of the response
response = flow_instance.run(
"Generate a 10,000 word long blog on mental clarity and the"
" benefits of meditation."
)
4 months ago
assert (
len(response) > flow_instance.get_response_length_threshold()
)
5 months ago
def test_flow_set_response_length_threshold(flow_instance):
# Test setting and getting the response length threshold
flow_instance.set_response_length_threshold(100)
assert flow_instance.get_response_length_threshold() == 100
def test_flow_add_custom_filter(flow_instance):
# Test adding a custom response filter
flow_instance.add_response_filter("custom_filter")
assert "custom_filter" in flow_instance.get_response_filters()
def test_flow_remove_custom_filter(flow_instance):
# Test removing a custom response filter
flow_instance.add_response_filter("custom_filter")
flow_instance.remove_response_filter("custom_filter")
assert "custom_filter" not in flow_instance.get_response_filters()
def test_flow_dynamic_pacing(flow_instance):
# Test dynamic pacing
flow_instance.enable_dynamic_pacing()
assert flow_instance.is_dynamic_pacing_enabled() is True
def test_flow_disable_dynamic_pacing(flow_instance):
# Test disabling dynamic pacing
flow_instance.disable_dynamic_pacing()
assert flow_instance.is_dynamic_pacing_enabled() is False
def test_flow_change_prompt(flow_instance):
# Test changing the current prompt
flow_instance.change_prompt("New prompt")
assert flow_instance.get_current_prompt() == "New prompt"
def test_flow_add_instruction(flow_instance):
# Test adding an instruction to the conversation
flow_instance.add_instruction("Follow these steps:")
assert "Follow these steps:" in flow_instance.get_instructions()
def test_flow_clear_instructions(flow_instance):
# Test clearing all instructions from the conversation
flow_instance.add_instruction("Follow these steps:")
flow_instance.clear_instructions()
assert len(flow_instance.get_instructions()) == 0
def test_flow_add_user_message(flow_instance):
# Test adding a user message to the conversation
flow_instance.add_user_message("User message")
assert "User message" in flow_instance.get_user_messages()
def test_flow_clear_user_messages(flow_instance):
# Test clearing all user messages from the conversation
flow_instance.add_user_message("User message")
flow_instance.clear_user_messages()
assert len(flow_instance.get_user_messages()) == 0
def test_flow_get_response_history(flow_instance):
# Test getting the response history
flow_instance.run("Message 1")
flow_instance.run("Message 2")
history = flow_instance.get_response_history()
assert len(history) == 2
assert "Message 1" in history[0]
assert "Message 2" in history[1]
def test_flow_clear_response_history(flow_instance):
# Test clearing the response history
flow_instance.run("Message 1")
flow_instance.run("Message 2")
flow_instance.clear_response_history()
assert len(flow_instance.get_response_history()) == 0
def test_flow_get_conversation_log(flow_instance):
# Test getting the entire conversation log
flow_instance.run("Message 1")
flow_instance.run("Message 2")
conversation_log = flow_instance.get_conversation_log()
4 months ago
assert (
len(conversation_log) == 4
) # Including system and user messages
5 months ago
def test_flow_clear_conversation_log(flow_instance):
# Test clearing the entire conversation log
flow_instance.run("Message 1")
flow_instance.run("Message 2")
flow_instance.clear_conversation_log()
assert len(flow_instance.get_conversation_log()) == 0
def test_flow_get_state(flow_instance):
# Test getting the current state of the Agent instance
state = flow_instance.get_state()
assert isinstance(state, dict)
assert "current_prompt" in state
assert "instructions" in state
assert "user_messages" in state
assert "response_history" in state
assert "conversation_log" in state
assert "dynamic_pacing_enabled" in state
assert "response_length_threshold" in state
assert "response_filters" in state
assert "max_loops" in state
assert "autosave_path" in state
def test_flow_load_state(flow_instance):
# Test loading the state into the Agent instance
state = {
"current_prompt": "Loaded prompt",
"instructions": ["Step 1", "Step 2"],
"user_messages": ["User message 1", "User message 2"],
"response_history": ["Response 1", "Response 2"],
"conversation_log": [
"System message 1",
"User message 1",
"System message 2",
"User message 2",
],
"dynamic_pacing_enabled": True,
"response_length_threshold": 50,
"response_filters": ["filter1", "filter2"],
"max_loops": 10,
"autosave_path": "/path/to/load",
}
flow_instance.load(state)
5 months ago
assert flow_instance.get_current_prompt() == "Loaded prompt"
assert "Step 1" in flow_instance.get_instructions()
assert "User message 1" in flow_instance.get_user_messages()
assert "Response 1" in flow_instance.get_response_history()
assert "System message 1" in flow_instance.get_conversation_log()
assert flow_instance.is_dynamic_pacing_enabled() is True
assert flow_instance.get_response_length_threshold() == 50
assert "filter1" in flow_instance.get_response_filters()
assert flow_instance.get_max_loops() == 10
assert flow_instance.get_autosave_path() == "/path/to/load"
def test_flow_save_state(flow_instance):
# Test saving the state of the Agent instance
flow_instance.change_prompt("New prompt")
flow_instance.add_instruction("Step 1")
flow_instance.add_user_message("User message")
flow_instance.run("Response")
state = flow_instance.save_state()
assert "current_prompt" in state
assert "instructions" in state
assert "user_messages" in state
assert "response_history" in state
assert "conversation_log" in state
assert "dynamic_pacing_enabled" in state
assert "response_length_threshold" in state
assert "response_filters" in state
assert "max_loops" in state
assert "autosave_path" in state
def test_flow_rollback(flow_instance):
# Test rolling back to a previous state
state1 = flow_instance.get_state()
flow_instance.change_prompt("New prompt")
flow_instance.get_state()
flow_instance.rollback_to_state(state1)
4 months ago
assert (
flow_instance.get_current_prompt() == state1["current_prompt"]
)
5 months ago
assert flow_instance.get_instructions() == state1["instructions"]
assert (
4 months ago
flow_instance.get_user_messages() == state1["user_messages"]
)
assert (
flow_instance.get_response_history()
== state1["response_history"]
5 months ago
)
assert (
4 months ago
flow_instance.get_conversation_log()
== state1["conversation_log"]
5 months ago
)
assert (
flow_instance.is_dynamic_pacing_enabled()
== state1["dynamic_pacing_enabled"]
)
assert (
flow_instance.get_response_length_threshold()
== state1["response_length_threshold"]
)
assert (
4 months ago
flow_instance.get_response_filters()
== state1["response_filters"]
5 months ago
)
assert flow_instance.get_max_loops() == state1["max_loops"]
4 months ago
assert (
flow_instance.get_autosave_path() == state1["autosave_path"]
)
5 months ago
assert flow_instance.get_state() == state1
def test_flow_contextual_intent(flow_instance):
# Test contextual intent handling
flow_instance.add_context("location", "New York")
flow_instance.add_context("time", "tomorrow")
response = flow_instance.run(
"What's the weather like in {location} at {time}?"
)
assert "New York" in response
assert "tomorrow" in response
def test_flow_contextual_intent_override(flow_instance):
# Test contextual intent override
flow_instance.add_context("location", "New York")
4 months ago
response1 = flow_instance.run(
"What's the weather like in {location}?"
)
5 months ago
flow_instance.add_context("location", "Los Angeles")
4 months ago
response2 = flow_instance.run(
"What's the weather like in {location}?"
)
5 months ago
assert "New York" in response1
assert "Los Angeles" in response2
def test_flow_contextual_intent_reset(flow_instance):
# Test resetting contextual intent
flow_instance.add_context("location", "New York")
4 months ago
response1 = flow_instance.run(
"What's the weather like in {location}?"
)
5 months ago
flow_instance.reset_context()
4 months ago
response2 = flow_instance.run(
"What's the weather like in {location}?"
)
5 months ago
assert "New York" in response1
assert "New York" in response2
# Add more test cases as needed to cover various aspects of your Agent class
def test_flow_interruptible(flow_instance):
# Test interruptible mode
flow_instance.interruptible = True
response = flow_instance.run("Interrupt me!")
assert "Interrupted" in response
assert flow_instance.is_interrupted() is True
def test_flow_non_interruptible(flow_instance):
# Test non-interruptible mode
flow_instance.interruptible = False
response = flow_instance.run("Do not interrupt me!")
assert "Do not interrupt me!" in response
assert flow_instance.is_interrupted() is False
def test_flow_timeout(flow_instance):
# Test conversation timeout
flow_instance.timeout = 60 # Set a timeout of 60 seconds
4 months ago
response = flow_instance.run(
"This should take some time to respond."
)
5 months ago
assert "Timed out" in response
assert flow_instance.is_timed_out() is True
def test_flow_no_timeout(flow_instance):
# Test no conversation timeout
flow_instance.timeout = None
response = flow_instance.run("This should not time out.")
assert "This should not time out." in response
assert flow_instance.is_timed_out() is False
def test_flow_custom_delimiter(flow_instance):
# Test setting and getting a custom message delimiter
flow_instance.set_message_delimiter("|||")
assert flow_instance.get_message_delimiter() == "|||"
def test_flow_message_history(flow_instance):
# Test getting the message history
flow_instance.run("Message 1")
flow_instance.run("Message 2")
history = flow_instance.get_message_history()
assert len(history) == 2
assert "Message 1" in history[0]
assert "Message 2" in history[1]
def test_flow_clear_message_history(flow_instance):
# Test clearing the message history
flow_instance.run("Message 1")
flow_instance.run("Message 2")
flow_instance.clear_message_history()
assert len(flow_instance.get_message_history()) == 0
def test_flow_save_and_load_conversation(flow_instance):
# Test saving and loading the conversation
flow_instance.run("Message 1")
flow_instance.run("Message 2")
saved_conversation = flow_instance.save_conversation()
flow_instance.clear_conversation()
flow_instance.load_conversation(saved_conversation)
assert len(flow_instance.get_message_history()) == 2
def test_flow_inject_custom_system_message(flow_instance):
# Test injecting a custom system message into the conversation
4 months ago
flow_instance.inject_custom_system_message(
"Custom system message"
)
assert (
"Custom system message" in flow_instance.get_message_history()
)
5 months ago
def test_flow_inject_custom_user_message(flow_instance):
# Test injecting a custom user message into the conversation
flow_instance.inject_custom_user_message("Custom user message")
4 months ago
assert (
"Custom user message" in flow_instance.get_message_history()
)
5 months ago
def test_flow_inject_custom_response(flow_instance):
# Test injecting a custom response into the conversation
flow_instance.inject_custom_response("Custom response")
assert "Custom response" in flow_instance.get_message_history()
def test_flow_clear_injected_messages(flow_instance):
# Test clearing injected messages from the conversation
4 months ago
flow_instance.inject_custom_system_message(
"Custom system message"
)
5 months ago
flow_instance.inject_custom_user_message("Custom user message")
flow_instance.inject_custom_response("Custom response")
flow_instance.clear_injected_messages()
assert (
4 months ago
"Custom system message"
not in flow_instance.get_message_history()
)
assert (
"Custom user message"
not in flow_instance.get_message_history()
)
assert (
"Custom response" not in flow_instance.get_message_history()
5 months ago
)
def test_flow_disable_message_history(flow_instance):
# Test disabling message history recording
flow_instance.disable_message_history()
response = flow_instance.run(
"This message should not be recorded in history."
)
4 months ago
assert (
"This message should not be recorded in history." in response
)
5 months ago
assert (
len(flow_instance.get_message_history()) == 0
) # History is empty
def test_flow_enable_message_history(flow_instance):
# Test enabling message history recording
flow_instance.enable_message_history()
response = flow_instance.run(
"This message should be recorded in history."
)
assert "This message should be recorded in history." in response
assert len(flow_instance.get_message_history()) == 1
def test_flow_custom_logger(flow_instance):
# Test setting and using a custom logger
custom_logger = logger # Replace with your custom logger class
flow_instance.set_logger(custom_logger)
response = flow_instance.run("Custom logger test")
assert (
"Logged using custom logger" in response
) # Verify logging message
def test_flow_batch_processing(flow_instance):
# Test batch processing of messages
messages = ["Message 1", "Message 2", "Message 3"]
responses = flow_instance.process_batch(messages)
assert isinstance(responses, list)
assert len(responses) == len(messages)
for response in responses:
assert isinstance(response, str)
def test_flow_custom_metrics(flow_instance):
# Test tracking custom metrics
flow_instance.track_custom_metric("custom_metric_1", 42)
flow_instance.track_custom_metric("custom_metric_2", 3.14)
metrics = flow_instance.get_custom_metrics()
assert "custom_metric_1" in metrics
assert "custom_metric_2" in metrics
assert metrics["custom_metric_1"] == 42
assert metrics["custom_metric_2"] == 3.14
def test_flow_reset_metrics(flow_instance):
# Test resetting custom metrics
flow_instance.track_custom_metric("custom_metric_1", 42)
flow_instance.track_custom_metric("custom_metric_2", 3.14)
flow_instance.reset_custom_metrics()
metrics = flow_instance.get_custom_metrics()
assert len(metrics) == 0
def test_flow_retrieve_context(flow_instance):
# Test retrieving context
flow_instance.add_context("location", "New York")
context = flow_instance.get_context("location")
assert context == "New York"
def test_flow_update_context(flow_instance):
# Test updating context
flow_instance.add_context("location", "New York")
flow_instance.update_context("location", "Los Angeles")
context = flow_instance.get_context("location")
assert context == "Los Angeles"
def test_flow_remove_context(flow_instance):
# Test removing context
flow_instance.add_context("location", "New York")
flow_instance.remove_context("location")
context = flow_instance.get_context("location")
assert context is None
def test_flow_clear_context(flow_instance):
# Test clearing all context
flow_instance.add_context("location", "New York")
flow_instance.add_context("time", "tomorrow")
flow_instance.clear_context()
context_location = flow_instance.get_context("location")
context_time = flow_instance.get_context("time")
assert context_location is None
assert context_time is None
def test_flow_input_validation(flow_instance):
# Test input validation for invalid agent configurations
with pytest.raises(ValueError):
Agent(config=None) # Invalid config, should raise ValueError
with pytest.raises(ValueError):
flow_instance.set_message_delimiter(
""
) # Empty delimiter, should raise ValueError
with pytest.raises(ValueError):
flow_instance.set_message_delimiter(
None
) # None delimiter, should raise ValueError
with pytest.raises(ValueError):
flow_instance.set_message_delimiter(
123
) # Invalid delimiter type, should raise ValueError
with pytest.raises(ValueError):
flow_instance.set_logger(
"invalid_logger"
) # Invalid logger type, should raise ValueError
with pytest.raises(ValueError):
flow_instance.add_context(
None, "value"
) # None key, should raise ValueError
with pytest.raises(ValueError):
flow_instance.add_context(
"key", None
) # None value, should raise ValueError
with pytest.raises(ValueError):
flow_instance.update_context(
None, "value"
) # None key, should raise ValueError
with pytest.raises(ValueError):
flow_instance.update_context(
"key", None
) # None value, should raise ValueError
def test_flow_conversation_reset(flow_instance):
# Test conversation reset
flow_instance.run("Message 1")
flow_instance.run("Message 2")
flow_instance.reset_conversation()
assert len(flow_instance.get_message_history()) == 0
def test_flow_conversation_persistence(flow_instance):
# Test conversation persistence across instances
flow_instance.run("Message 1")
flow_instance.run("Message 2")
conversation = flow_instance.get_conversation()
new_flow_instance = Agent()
new_flow_instance.load_conversation(conversation)
assert len(new_flow_instance.get_message_history()) == 2
assert "Message 1" in new_flow_instance.get_message_history()[0]
assert "Message 2" in new_flow_instance.get_message_history()[1]
def test_flow_custom_event_listener(flow_instance):
# Test custom event listener
class CustomEventListener:
def on_message_received(self, message):
pass
def on_response_generated(self, response):
pass
custom_event_listener = CustomEventListener()
flow_instance.add_event_listener(custom_event_listener)
# Ensure that the custom event listener methods are called during a conversation
with mock.patch.object(
custom_event_listener, "on_message_received"
) as mock_received, mock.patch.object(
custom_event_listener, "on_response_generated"
) as mock_response:
flow_instance.run("Message 1")
mock_received.assert_called_once()
mock_response.assert_called_once()
def test_flow_multiple_event_listeners(flow_instance):
# Test multiple event listeners
class FirstEventListener:
def on_message_received(self, message):
pass
def on_response_generated(self, response):
pass
class SecondEventListener:
def on_message_received(self, message):
pass
def on_response_generated(self, response):
pass
first_event_listener = FirstEventListener()
second_event_listener = SecondEventListener()
flow_instance.add_event_listener(first_event_listener)
flow_instance.add_event_listener(second_event_listener)
# Ensure that both event listeners receive events during a conversation
with mock.patch.object(
first_event_listener, "on_message_received"
) as mock_first_received, mock.patch.object(
first_event_listener, "on_response_generated"
) as mock_first_response, mock.patch.object(
second_event_listener, "on_message_received"
) as mock_second_received, mock.patch.object(
second_event_listener, "on_response_generated"
) as mock_second_response:
flow_instance.run("Message 1")
mock_first_received.assert_called_once()
mock_first_response.assert_called_once()
mock_second_received.assert_called_once()
mock_second_response.assert_called_once()
# Add more test cases as needed to cover various aspects of your Agent class
def test_flow_error_handling(flow_instance):
# Test error handling and exceptions
with pytest.raises(ValueError):
flow_instance.set_message_delimiter(
""
) # Empty delimiter, should raise ValueError
with pytest.raises(ValueError):
flow_instance.set_message_delimiter(
None
) # None delimiter, should raise ValueError
with pytest.raises(ValueError):
flow_instance.set_logger(
"invalid_logger"
) # Invalid logger type, should raise ValueError
with pytest.raises(ValueError):
flow_instance.add_context(
None, "value"
) # None key, should raise ValueError
with pytest.raises(ValueError):
flow_instance.add_context(
"key", None
) # None value, should raise ValueError
with pytest.raises(ValueError):
flow_instance.update_context(
None, "value"
) # None key, should raise ValueError
with pytest.raises(ValueError):
flow_instance.update_context(
"key", None
) # None value, should raise ValueError
def test_flow_context_operations(flow_instance):
# Test context operations
flow_instance.add_context("user_id", "12345")
assert flow_instance.get_context("user_id") == "12345"
flow_instance.update_context("user_id", "54321")
assert flow_instance.get_context("user_id") == "54321"
flow_instance.remove_context("user_id")
assert flow_instance.get_context("user_id") is None
# Add more test cases as needed to cover various aspects of your Agent class
def test_flow_long_messages(flow_instance):
# Test handling of long messages
long_message = "A" * 10000 # Create a very long message
flow_instance.run(long_message)
assert len(flow_instance.get_message_history()) == 1
assert flow_instance.get_message_history()[0] == long_message
def test_flow_custom_response(flow_instance):
# Test custom response generation
def custom_response_generator(message):
if message == "Hello":
return "Hi there!"
elif message == "How are you?":
return "I'm doing well, thank you."
else:
return "I don't understand."
flow_instance.set_response_generator(custom_response_generator)
assert flow_instance.run("Hello") == "Hi there!"
assert (
4 months ago
flow_instance.run("How are you?")
== "I'm doing well, thank you."
)
assert (
flow_instance.run("What's your name?")
== "I don't understand."
5 months ago
)
def test_flow_message_validation(flow_instance):
# Test message validation
def custom_message_validator(message):
return len(message) > 0 # Reject empty messages
flow_instance.set_message_validator(custom_message_validator)
assert flow_instance.run("Valid message") is not None
assert (
flow_instance.run("") is None
) # Empty message should be rejected
assert (
flow_instance.run(None) is None
) # None message should be rejected
def test_flow_custom_logging(flow_instance):
custom_logger = logger
flow_instance.set_logger(custom_logger)
with mock.patch.object(custom_logger, "log") as mock_log:
flow_instance.run("Message")
mock_log.assert_called_once_with("Message")
def test_flow_performance(flow_instance):
# Test the performance of the Agent class by running a large number of messages
num_messages = 1000
for i in range(num_messages):
flow_instance.run(f"Message {i}")
assert len(flow_instance.get_message_history()) == num_messages
def test_flow_complex_use_case(flow_instance):
# Test a complex use case scenario
flow_instance.add_context("user_id", "12345")
flow_instance.run("Hello")
flow_instance.run("How can I help you?")
4 months ago
assert (
flow_instance.get_response() == "Please provide more details."
)
5 months ago
flow_instance.update_context("user_id", "54321")
flow_instance.run("I need help with my order")
4 months ago
assert (
flow_instance.get_response()
== "Sure, I can assist with that."
)
5 months ago
flow_instance.reset_conversation()
assert len(flow_instance.get_message_history()) == 0
assert flow_instance.get_context("user_id") is None
# Add more test cases as needed to cover various aspects of your Agent class
def test_flow_context_handling(flow_instance):
# Test context handling
flow_instance.add_context("user_id", "12345")
assert flow_instance.get_context("user_id") == "12345"
flow_instance.update_context("user_id", "54321")
assert flow_instance.get_context("user_id") == "54321"
flow_instance.remove_context("user_id")
assert flow_instance.get_context("user_id") is None
def test_flow_concurrent_requests(flow_instance):
# Test concurrent message processing
import threading
def send_messages():
for i in range(100):
flow_instance.run(f"Message {i}")
threads = []
for _ in range(5):
thread = threading.Thread(target=send_messages)
threads.append(thread)
thread.start()
for thread in threads:
thread.join()
assert len(flow_instance.get_message_history()) == 500
def test_flow_custom_timeout(flow_instance):
# Test custom timeout handling
4 months ago
flow_instance.set_timeout(
10
) # Set a custom timeout of 10 seconds
5 months ago
assert flow_instance.get_timeout() == 10
import time
start_time = time.time()
flow_instance.run("Long-running operation")
end_time = time.time()
execution_time = end_time - start_time
assert execution_time >= 10 # Ensure the timeout was respected
# Add more test cases as needed to thoroughly cover your Agent class
def test_flow_interactive_run(flow_instance, capsys):
# Test interactive run mode
# Simulate user input and check if the AI responds correctly
user_input = ["Hello", "How can you help me?", "Exit"]
def simulate_user_input(input_list):
input_index = 0
while input_index < len(input_list):
user_response = input_list[input_index]
flow_instance.interactive_run(max_loops=1)
# Capture the AI's response
captured = capsys.readouterr()
ai_response = captured.out.strip()
assert f"You: {user_response}" in captured.out
assert "AI:" in captured.out
# Check if the AI's response matches the expected response
expected_response = f"AI: {ai_response}"
assert expected_response in captured.out
input_index += 1
simulate_user_input(user_input)
# Assuming you have already defined your Agent class and created an instance for testing
def test_flow_agent_history_prompt(flow_instance):
# Test agent history prompt generation
system_prompt = "This is the system prompt."
history = ["User: Hi", "AI: Hello"]
agent_history_prompt = flow_instance.agent_history_prompt(
system_prompt, history
)
assert (
4 months ago
"SYSTEM_PROMPT: This is the system prompt."
in agent_history_prompt
)
assert (
"History: ['User: Hi', 'AI: Hello']" in agent_history_prompt
5 months ago
)
async def test_flow_run_concurrent(flow_instance):
# Test running tasks concurrently
tasks = ["Task 1", "Task 2", "Task 3"]
completed_tasks = await flow_instance.run_concurrent(tasks)
# Ensure that all tasks are completed
assert len(completed_tasks) == len(tasks)
def test_flow_bulk_run(flow_instance):
# Test bulk running of tasks
input_data = [
{"task": "Task 1", "param1": "value1"},
{"task": "Task 2", "param2": "value2"},
{"task": "Task 3", "param3": "value3"},
]
responses = flow_instance.bulk_run(input_data)
# Ensure that the responses match the input tasks
assert responses[0] == "Response for Task 1"
assert responses[1] == "Response for Task 2"
assert responses[2] == "Response for Task 3"
def test_flow_from_llm_and_template():
# Test creating Agent instance from an LLM and a template
llm_instance = mocked_llm # Replace with your LLM class
template = "This is a template for testing."
4 months ago
flow_instance = Agent.from_llm_and_template(
llm_instance, template
)
5 months ago
assert isinstance(flow_instance, Agent)
def test_flow_from_llm_and_template_file():
# Test creating Agent instance from an LLM and a template file
llm_instance = mocked_llm # Replace with your LLM class
4 months ago
template_file = (
"template.txt" # Create a template file for testing
)
5 months ago
flow_instance = Agent.from_llm_and_template_file(
llm_instance, template_file
)
assert isinstance(flow_instance, Agent)
def test_flow_save_and_load(flow_instance, tmp_path):
# Test saving and loading the agent state
file_path = tmp_path / "flow_state.json"
# Save the state
flow_instance.save(file_path)
# Create a new instance and load the state
new_flow_instance = Agent(llm=mocked_llm, max_loops=5)
new_flow_instance.load(file_path)
# Ensure that the loaded state matches the original state
assert new_flow_instance.memory == flow_instance.memory
def test_flow_validate_response(flow_instance):
# Test response validation
valid_response = "This is a valid response."
invalid_response = "Short."
assert flow_instance.validate_response(valid_response) is True
assert flow_instance.validate_response(invalid_response) is False
# Add more test cases as needed for other methods and features of your Agent class
# Finally, don't forget to run your tests using a testing framework like pytest
# Assuming you have already defined your Agent class and created an instance for testing
def test_flow_print_history_and_memory(capsys, flow_instance):
# Test printing the history and memory of the agent
history = ["User: Hi", "AI: Hello"]
flow_instance.memory = [history]
flow_instance.print_history_and_memory()
captured = capsys.readouterr()
assert "Agent History and Memory" in captured.out
assert "Loop 1:" in captured.out
assert "User: Hi" in captured.out
assert "AI: Hello" in captured.out
def test_flow_run_with_timeout(flow_instance):
# Test running with a timeout
task = "Task with a long response time"
response = flow_instance.run_with_timeout(task, timeout=1)
# Ensure that the response is either the actual response or "Timeout"
assert response in ["Actual Response", "Timeout"]
# Add more test cases as needed for other methods and features of your Agent class
# Finally, don't forget to run your tests using a testing framework like pytest