You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
98 lines
2.7 KiB
98 lines
2.7 KiB
5 months ago
|
import os
|
||
|
from swarms import Agent, OpenAIChat
|
||
|
from swarms.prompts.finance_agent_sys_prompt import (
|
||
|
FINANCIAL_AGENT_SYS_PROMPT,
|
||
|
)
|
||
|
|
||
|
# Get the OpenAI API key from the environment variable
|
||
|
api_key = os.getenv("OPENAI_API_KEY")
|
||
|
|
||
|
# Create an instance of the OpenAIChat class
|
||
|
model = OpenAIChat(
|
||
|
api_key=api_key, model_name="gpt-4o-mini", temperature=0.1
|
||
|
)
|
||
|
|
||
|
# Initialize the agent
|
||
|
agent = Agent(
|
||
|
agent_name="Financial-Analysis-Agent-General-11",
|
||
|
system_prompt=FINANCIAL_AGENT_SYS_PROMPT,
|
||
|
llm=model,
|
||
|
max_loops=1,
|
||
|
autosave=False,
|
||
|
dashboard=False,
|
||
|
verbose=True,
|
||
|
# interactive=True, # Set to False to disable interactive mode
|
||
|
dynamic_temperature_enabled=True,
|
||
|
saved_state_path="finance_agent.json",
|
||
|
# tools=[#Add your functions here# ],
|
||
|
# stopping_token="Stop!",
|
||
|
# docs_folder="docs", # Enter your folder name
|
||
|
# pdf_path="docs/finance_agent.pdf",
|
||
|
# sop="Calculate the profit for a company.",
|
||
|
# sop_list=["Calculate the profit for a company."],
|
||
|
user_name="swarms_corp",
|
||
|
# # docs="",
|
||
|
retry_attempts=3,
|
||
|
# context_length=1000,
|
||
|
# tool_schema = dict
|
||
|
context_length=200000,
|
||
|
tool_system_prompt=None,
|
||
|
)
|
||
|
|
||
|
# # Convert the agent object to a dictionary
|
||
|
print(agent.to_dict())
|
||
|
print(agent.to_toml())
|
||
|
print(agent.model_dump_json())
|
||
|
print(agent.model_dump_yaml())
|
||
|
|
||
|
# Ingest documents into the agent's knowledge base
|
||
|
agent.ingest_docs("your_pdf_path.pdf")
|
||
|
|
||
|
# Receive a message from a user and process it
|
||
|
agent.receive_message(name="agent_name", message="message")
|
||
|
|
||
|
# Send a message from the agent to a user
|
||
|
agent.send_agent_message(agent_name="agent_name", message="message")
|
||
|
|
||
|
# Ingest multiple documents into the agent's knowledge base
|
||
|
agent.ingest_docs("your_pdf_path.pdf", "your_csv_path.csv")
|
||
|
|
||
|
# Run the agent with a filtered system prompt
|
||
|
agent.filtered_run(
|
||
|
"How can I establish a ROTH IRA to buy stocks and get a tax break? What are the criteria?"
|
||
|
)
|
||
|
|
||
|
# Run the agent with multiple system prompts
|
||
|
agent.bulk_run(
|
||
|
[
|
||
|
"How can I establish a ROTH IRA to buy stocks and get a tax break? What are the criteria?",
|
||
|
"Another system prompt",
|
||
|
]
|
||
|
)
|
||
|
|
||
|
# Add a memory to the agent
|
||
|
agent.add_memory("Add a memory to the agent")
|
||
|
|
||
|
# Check the number of available tokens for the agent
|
||
|
agent.check_available_tokens()
|
||
|
|
||
|
# Perform token checks for the agent
|
||
|
agent.tokens_checks()
|
||
|
|
||
|
# Print the dashboard of the agent
|
||
|
agent.print_dashboard()
|
||
|
|
||
|
# Print the history and memory of the agent
|
||
|
agent.print_history_and_memory()
|
||
|
|
||
|
# Fetch all the documents from the doc folders
|
||
|
agent.get_docs_from_doc_folders()
|
||
|
|
||
|
# Activate agent ops
|
||
|
agent.activate_agentops()
|
||
|
agent.check_end_session_agentops()
|
||
|
|
||
|
# Dump the model to a JSON file
|
||
|
agent.model_dump_json()
|
||
|
print(agent.to_toml())
|