You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/tests/models/test_hf.py

457 lines
15 KiB

6 months ago
import logging
from unittest.mock import patch
import pytest
import torch
from swarms.models.huggingface import HuggingfaceLLM
# Fixture for the class instance
@pytest.fixture
def llm_instance():
model_id = "NousResearch/Nous-Hermes-2-Vision-Alpha"
instance = HuggingfaceLLM(model_id=model_id)
return instance
# Test for instantiation and attributes
def test_llm_initialization(llm_instance):
assert (
llm_instance.model_id == "NousResearch/Nous-Hermes-2-Vision-Alpha"
)
assert llm_instance.max_length == 500
# ... add more assertions for all default attributes
# Parameterized test for setting devices
@pytest.mark.parametrize("device", ["cpu", "cuda"])
def test_llm_set_device(llm_instance, device):
llm_instance.set_device(device)
assert llm_instance.device == device
# Test exception during initialization with a bad model_id
def test_llm_bad_model_initialization():
with pytest.raises(Exception):
HuggingfaceLLM(model_id="unknown-model")
# # Mocking the tokenizer and model to test run method
# @patch("swarms.models.huggingface.AutoTokenizer.from_pretrained")
# @patch(
# "swarms.models.huggingface.AutoModelForCausalLM.from_pretrained"
# )
# def test_llm_run(mock_model, mock_tokenizer, llm_instance):
# mock_model.return_value.generate.return_value = "mocked output"
# mock_tokenizer.return_value.encode.return_value = "mocked input"
# result = llm_instance.run("test task")
# assert result == "mocked output"
# Async test (requires pytest-asyncio plugin)
@pytest.mark.asyncio
async def test_llm_run_async(llm_instance):
result = await llm_instance.run_async("test task")
assert isinstance(result, str)
# Test for checking GPU availability
def test_llm_gpu_availability(llm_instance):
# Assuming the test is running on a machine where the GPU availability is known
expected_result = torch.cuda.is_available()
assert llm_instance.gpu_available() == expected_result
# Test for memory consumption reporting
def test_llm_memory_consumption(llm_instance):
# Mocking torch.cuda functions for consistent results
with patch("torch.cuda.memory_allocated", return_value=1024):
with patch("torch.cuda.memory_reserved", return_value=2048):
memory = llm_instance.memory_consumption()
assert memory == {"allocated": 1024, "reserved": 2048}
# Test different initialization parameters
@pytest.mark.parametrize(
"model_id, max_length",
[
("NousResearch/Nous-Hermes-2-Vision-Alpha", 100),
("microsoft/Orca-2-13b", 200),
(
"berkeley-nest/Starling-LM-7B-alpha",
None,
), # None to check default behavior
],
)
def test_llm_initialization_params(model_id, max_length):
if max_length:
instance = HuggingfaceLLM(model_id=model_id, max_length=max_length)
assert instance.max_length == max_length
else:
instance = HuggingfaceLLM(model_id=model_id)
assert (
instance.max_length == 500
) # Assuming 500 is the default max_length
# Test for setting an invalid device
def test_llm_set_invalid_device(llm_instance):
with pytest.raises(ValueError):
llm_instance.set_device("quantum_processor")
# Mocking external API call to test run method without network
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_run_without_network(mock_run, llm_instance):
mock_run.return_value = "mocked output"
result = llm_instance.run("test task without network")
assert result == "mocked output"
# Test handling of empty input for the run method
def test_llm_run_empty_input(llm_instance):
with pytest.raises(ValueError):
llm_instance.run("")
# Test the generation with a provided seed for reproducibility
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_run_with_seed(mock_run, llm_instance):
seed = 42
llm_instance.set_seed(seed)
# Assuming set_seed method affects the randomness in the model
# You would typically ensure that setting the seed gives reproducible results
mock_run.return_value = "mocked deterministic output"
result = llm_instance.run("test task", seed=seed)
assert result == "mocked deterministic output"
# Test the output length is as expected
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_run_output_length(mock_run, llm_instance):
input_text = "test task"
llm_instance.max_length = 50 # set a max_length for the output
mock_run.return_value = "mocked output" * 10 # some long text
result = llm_instance.run(input_text)
assert len(result.split()) <= llm_instance.max_length
# Test the tokenizer handling special tokens correctly
@patch("swarms.models.huggingface.HuggingfaceLLM._tokenizer.encode")
@patch("swarms.models.huggingface.HuggingfaceLLM._tokenizer.decode")
def test_llm_tokenizer_special_tokens(
mock_decode, mock_encode, llm_instance
):
mock_encode.return_value = "encoded input with special tokens"
mock_decode.return_value = "decoded output with special tokens"
result = llm_instance.run("test task with special tokens")
mock_encode.assert_called_once()
mock_decode.assert_called_once()
assert "special tokens" in result
# Test for correct handling of timeouts
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_timeout_handling(mock_run, llm_instance):
mock_run.side_effect = TimeoutError
with pytest.raises(TimeoutError):
llm_instance.run("test task with timeout")
# Test for response time within a threshold (performance test)
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_response_time(mock_run, llm_instance):
import time
mock_run.return_value = "mocked output"
start_time = time.time()
llm_instance.run("test task for response time")
end_time = time.time()
assert (
end_time - start_time < 1
) # Assuming the response should be faster than 1 second
# Test the logging of a warning for long inputs
@patch("swarms.models.huggingface.logging.warning")
def test_llm_long_input_warning(mock_warning, llm_instance):
long_input = "x" * 10000 # input longer than the typical limit
llm_instance.run(long_input)
mock_warning.assert_called_once()
# Test for run method behavior when model raises an exception
@patch(
"swarms.models.huggingface.HuggingfaceLLM._model.generate",
side_effect=RuntimeError,
)
def test_llm_run_model_exception(mock_generate, llm_instance):
with pytest.raises(RuntimeError):
llm_instance.run("test task when model fails")
# Test the behavior when GPU is forced but not available
@patch("torch.cuda.is_available", return_value=False)
def test_llm_force_gpu_when_unavailable(mock_is_available, llm_instance):
with pytest.raises(EnvironmentError):
llm_instance.set_device(
"cuda"
) # Attempt to set CUDA when it's not available
# Test for proper cleanup after model use (releasing resources)
@patch("swarms.models.huggingface.HuggingfaceLLM._model")
def test_llm_cleanup(mock_model, mock_tokenizer, llm_instance):
llm_instance.cleanup()
# Assuming cleanup method is meant to free resources
mock_model.delete.assert_called_once()
mock_tokenizer.delete.assert_called_once()
# Test model's ability to handle multilingual input
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_multilingual_input(mock_run, llm_instance):
mock_run.return_value = "mocked multilingual output"
multilingual_input = "Bonjour, ceci est un test multilingue."
result = llm_instance.run(multilingual_input)
assert isinstance(
result, str
) # Simple check to ensure output is string type
# Test caching mechanism to prevent re-running the same inputs
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_caching_mechanism(mock_run, llm_instance):
input_text = "test caching mechanism"
mock_run.return_value = "cached output"
# Run the input twice
first_run_result = llm_instance.run(input_text)
second_run_result = llm_instance.run(input_text)
mock_run.assert_called_once() # Should only be called once due to caching
assert first_run_result == second_run_result
# These tests are provided as examples. In real-world scenarios, you will need to adapt these tests to the actual logic of your `HuggingfaceLLM` class.
# For instance, "mock_model.delete.assert_called_once()" and similar lines are based on hypothetical methods and behaviors that you need to replace with actual implementations.
# Mock some functions and objects for testing
@pytest.fixture
def mock_huggingface_llm(monkeypatch):
# Mock the model and tokenizer creation
def mock_init(
self,
model_id,
device="cpu",
max_length=500,
quantize=False,
quantization_config=None,
verbose=False,
distributed=False,
decoding=False,
max_workers=5,
repitition_penalty=1.3,
no_repeat_ngram_size=5,
temperature=0.7,
top_k=40,
top_p=0.8,
):
pass
# Mock the model loading
def mock_load_model(self):
pass
# Mock the model generation
def mock_run(self, task):
pass
monkeypatch.setattr(HuggingfaceLLM, "__init__", mock_init)
monkeypatch.setattr(HuggingfaceLLM, "load_model", mock_load_model)
monkeypatch.setattr(HuggingfaceLLM, "run", mock_run)
# Basic tests for initialization and attribute settings
def test_init_huggingface_llm():
llm = HuggingfaceLLM(
model_id="test_model",
device="cuda",
max_length=1000,
quantize=True,
quantization_config={"config_key": "config_value"},
verbose=True,
distributed=True,
decoding=True,
max_workers=3,
repitition_penalty=1.5,
no_repeat_ngram_size=4,
temperature=0.8,
top_k=50,
top_p=0.7,
)
assert llm.model_id == "test_model"
assert llm.device == "cuda"
assert llm.max_length == 1000
assert llm.quantize is True
assert llm.quantization_config == {"config_key": "config_value"}
assert llm.verbose is True
assert llm.distributed is True
assert llm.decoding is True
assert llm.max_workers == 3
assert llm.repitition_penalty == 1.5
assert llm.no_repeat_ngram_size == 4
assert llm.temperature == 0.8
assert llm.top_k == 50
assert llm.top_p == 0.7
# Test loading the model
def test_load_model(mock_huggingface_llm):
llm = HuggingfaceLLM(model_id="test_model")
llm.load_model()
# Test running the model
def test_run(mock_huggingface_llm):
llm = HuggingfaceLLM(model_id="test_model")
llm.run("Test prompt")
# Test for setting max_length
def test_llm_set_max_length(llm_instance):
new_max_length = 1000
llm_instance.set_max_length(new_max_length)
assert llm_instance.max_length == new_max_length
# Test for setting verbose
def test_llm_set_verbose(llm_instance):
llm_instance.set_verbose(True)
assert llm_instance.verbose is True
# Test for setting distributed
def test_llm_set_distributed(llm_instance):
llm_instance.set_distributed(True)
assert llm_instance.distributed is True
# Test for setting decoding
def test_llm_set_decoding(llm_instance):
llm_instance.set_decoding(True)
assert llm_instance.decoding is True
# Test for setting max_workers
def test_llm_set_max_workers(llm_instance):
new_max_workers = 10
llm_instance.set_max_workers(new_max_workers)
assert llm_instance.max_workers == new_max_workers
# Test for setting repitition_penalty
def test_llm_set_repitition_penalty(llm_instance):
new_repitition_penalty = 1.5
llm_instance.set_repitition_penalty(new_repitition_penalty)
assert llm_instance.repitition_penalty == new_repitition_penalty
# Test for setting no_repeat_ngram_size
def test_llm_set_no_repeat_ngram_size(llm_instance):
new_no_repeat_ngram_size = 6
llm_instance.set_no_repeat_ngram_size(new_no_repeat_ngram_size)
assert llm_instance.no_repeat_ngram_size == new_no_repeat_ngram_size
# Test for setting temperature
def test_llm_set_temperature(llm_instance):
new_temperature = 0.8
llm_instance.set_temperature(new_temperature)
assert llm_instance.temperature == new_temperature
# Test for setting top_k
def test_llm_set_top_k(llm_instance):
new_top_k = 50
llm_instance.set_top_k(new_top_k)
assert llm_instance.top_k == new_top_k
# Test for setting top_p
def test_llm_set_top_p(llm_instance):
new_top_p = 0.9
llm_instance.set_top_p(new_top_p)
assert llm_instance.top_p == new_top_p
# Test for setting quantize
def test_llm_set_quantize(llm_instance):
llm_instance.set_quantize(True)
assert llm_instance.quantize is True
# Test for setting quantization_config
def test_llm_set_quantization_config(llm_instance):
new_quantization_config = {
"load_in_4bit": False,
"bnb_4bit_use_double_quant": False,
"bnb_4bit_quant_type": "nf4",
"bnb_4bit_compute_dtype": torch.bfloat16,
}
llm_instance.set_quantization_config(new_quantization_config)
assert llm_instance.quantization_config == new_quantization_config
# Test for setting model_id
def test_llm_set_model_id(llm_instance):
new_model_id = "EleutherAI/gpt-neo-2.7B"
llm_instance.set_model_id(new_model_id)
assert llm_instance.model_id == new_model_id
# Test for setting model
@patch("swarms.models.huggingface.AutoModelForCausalLM.from_pretrained")
def test_llm_set_model(mock_model, llm_instance):
mock_model.return_value = "mocked model"
llm_instance.set_model(mock_model)
assert llm_instance.model == "mocked model"
# Test for setting tokenizer
@patch("swarms.models.huggingface.AutoTokenizer.from_pretrained")
def test_llm_set_tokenizer(mock_tokenizer, llm_instance):
mock_tokenizer.return_value = "mocked tokenizer"
llm_instance.set_tokenizer(mock_tokenizer)
assert llm_instance.tokenizer == "mocked tokenizer"
# Test for setting logger
def test_llm_set_logger(llm_instance):
new_logger = logging.getLogger("test_logger")
llm_instance.set_logger(new_logger)
assert llm_instance.logger == new_logger
# Test for saving model
@patch("torch.save")
def test_llm_save_model(mock_save, llm_instance):
llm_instance.save_model("path/to/save")
mock_save.assert_called_once()
# Test for print_dashboard
@patch("builtins.print")
def test_llm_print_dashboard(mock_print, llm_instance):
llm_instance.print_dashboard("test task")
mock_print.assert_called()
# Test for __call__ method
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_call(mock_run, llm_instance):
mock_run.return_value = "mocked output"
result = llm_instance("test task")
assert result == "mocked output"