You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
94 lines
2.2 KiB
94 lines
2.2 KiB
4 months ago
|
import os
|
||
|
|
||
|
from swarm_models import OpenAIChat
|
||
|
|
||
|
from swarms import Agent, MixtureOfAgents
|
||
|
|
||
|
# Example usage:
|
||
|
api_key = os.getenv("OPENAI_API_KEY")
|
||
|
|
||
|
# Create individual agents with the OpenAIChat model
|
||
|
model1 = OpenAIChat(
|
||
|
openai_api_key=api_key, model_name="gpt-4o-mini", temperature=0.1
|
||
|
)
|
||
|
model2 = OpenAIChat(
|
||
|
openai_api_key=api_key, model_name="gpt-4o-mini", temperature=0.1
|
||
|
)
|
||
|
model3 = OpenAIChat(
|
||
|
openai_api_key=api_key, model_name="gpt-4o-mini", temperature=0.1
|
||
|
)
|
||
|
|
||
|
agent1 = Agent(
|
||
|
agent_name="Agent1",
|
||
|
llm=model1,
|
||
|
max_loops=1,
|
||
|
autosave=True,
|
||
|
dashboard=False,
|
||
|
verbose=True,
|
||
|
dynamic_temperature_enabled=True,
|
||
|
saved_state_path="agent1_state.json",
|
||
|
user_name="swarms_corp",
|
||
|
retry_attempts=1,
|
||
|
context_length=200000,
|
||
|
return_step_meta=False,
|
||
|
)
|
||
|
|
||
|
agent2 = Agent(
|
||
|
agent_name="Agent2",
|
||
|
llm=model2,
|
||
|
max_loops=1,
|
||
|
autosave=True,
|
||
|
dashboard=False,
|
||
|
verbose=True,
|
||
|
dynamic_temperature_enabled=True,
|
||
|
saved_state_path="agent2_state.json",
|
||
|
user_name="swarms_corp",
|
||
|
retry_attempts=1,
|
||
|
context_length=200000,
|
||
|
return_step_meta=False,
|
||
|
)
|
||
|
|
||
|
agent3 = Agent(
|
||
|
agent_name="Agent3",
|
||
|
llm=model3,
|
||
|
max_loops=1,
|
||
|
autosave=True,
|
||
|
dashboard=False,
|
||
|
verbose=True,
|
||
|
dynamic_temperature_enabled=True,
|
||
|
saved_state_path="agent3_state.json",
|
||
|
user_name="swarms_corp",
|
||
|
retry_attempts=1,
|
||
|
context_length=200000,
|
||
|
return_step_meta=False,
|
||
|
)
|
||
|
|
||
|
aggregator_agent = Agent(
|
||
|
agent_name="AggregatorAgent",
|
||
|
llm=model1,
|
||
|
max_loops=1,
|
||
|
autosave=True,
|
||
|
dashboard=False,
|
||
|
verbose=True,
|
||
|
dynamic_temperature_enabled=True,
|
||
|
saved_state_path="aggregator_agent_state.json",
|
||
|
user_name="swarms_corp",
|
||
|
retry_attempts=1,
|
||
|
context_length=200000,
|
||
|
return_step_meta=False,
|
||
|
)
|
||
|
|
||
|
# Create the Mixture of Agents class
|
||
|
moa = MixtureOfAgents(
|
||
|
reference_agents=[agent1, agent2, agent3],
|
||
|
aggregator_agent=aggregator_agent,
|
||
|
aggregator_system_prompt="""You have been provided with a set of responses from various agents.
|
||
|
Your task is to synthesize these responses into a single, high-quality response.""",
|
||
|
layers=3,
|
||
|
)
|
||
|
|
||
|
out = moa.run(
|
||
|
"How can I establish a ROTH IRA to buy stocks and get a tax break? What are the criteria?"
|
||
|
)
|
||
|
print(out)
|