|
|
|
# Import the OpenAIChat model and the Agent struct
|
|
|
|
import os
|
|
|
|
from swarms import (
|
|
|
|
Agent,
|
|
|
|
OpenAIChat,
|
|
|
|
SwarmNetwork,
|
|
|
|
Anthropic,
|
|
|
|
TogetherLLM,
|
|
|
|
)
|
|
|
|
from swarms.memory import ChromaDB
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
|
|
|
|
# load the environment variables
|
|
|
|
load_dotenv()
|
|
|
|
|
|
|
|
# Initialize the ChromaDB
|
|
|
|
memory = ChromaDB()
|
|
|
|
|
|
|
|
# Initialize the language model
|
|
|
|
llm = OpenAIChat(
|
|
|
|
temperature=0.5,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Initialize the Anthropic
|
|
|
|
anthropic = Anthropic(max_tokens=3000)
|
|
|
|
|
|
|
|
# TogeterLM
|
|
|
|
together_llm = TogetherLLM(
|
|
|
|
together_api_key=os.getenv("TOGETHER_API_KEY"), max_tokens=3000
|
|
|
|
)
|
|
|
|
|
|
|
|
## Initialize the workflow
|
|
|
|
agent = Agent(
|
|
|
|
llm=anthropic,
|
|
|
|
max_loops=1,
|
|
|
|
agent_name="Social Media Manager",
|
|
|
|
long_term_memory=memory,
|
|
|
|
)
|
|
|
|
agent2 = Agent(
|
|
|
|
llm=llm,
|
|
|
|
max_loops=1,
|
|
|
|
agent_name=" Product Manager",
|
|
|
|
long_term_memory=memory,
|
|
|
|
)
|
|
|
|
agent3 = Agent(
|
|
|
|
llm=together_llm,
|
|
|
|
max_loops=1,
|
|
|
|
agent_name="SEO Manager",
|
|
|
|
long_term_memory=memory,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# Load the swarmnet with the agents
|
|
|
|
swarmnet = SwarmNetwork(
|
|
|
|
agents=[agent, agent2, agent3], logging_enabled=True
|
|
|
|
)
|
|
|
|
|
|
|
|
# List the agents in the swarm network
|
|
|
|
out = swarmnet.list_agents()
|
|
|
|
print(out)
|
|
|
|
|
|
|
|
# Run the workflow on a task
|
|
|
|
out = swarmnet.run_single_agent(
|
|
|
|
agent2.id, "Generate a 10,000 word blog on health and wellness."
|
|
|
|
)
|
|
|
|
print(out)
|