You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/main.py

134 lines
3.7 KiB

import os
import requests
from swarms import Agent, OpenAIChat
from swarms.prompts.finance_agent_sys_prompt import (
FINANCIAL_AGENT_SYS_PROMPT,
)
# Get the OpenAI API key from the environment variable
api_key = os.getenv("OPENAI_API_KEY")
# Create an instance of the OpenAIChat class
model = OpenAIChat(
api_key=api_key, model_name="gpt-4o-mini", temperature=0.1
)
def fetch_financial_news(
query: str = "Nvidia news", num_articles: int = 5
) -> str:
"""
Fetches financial news from the Google News API and returns a formatted string of the top news.
Args:
api_key (str): Your Google News API key.
query (str): The query term to search for news. Default is "financial".
num_articles (int): The number of top articles to fetch. Default is 5.
Returns:
str: A formatted string of the top financial news articles.
Raises:
ValueError: If the API response is invalid or there are no articles found.
requests.exceptions.RequestException: If there is an error with the request.
"""
url = "https://newsapi.org/v2/everything"
params = {
"q": query,
"apiKey": "ceabc81a7d8f45febfedadb27177f3a3",
"pageSize": num_articles,
"sortBy": "relevancy",
}
try:
response = requests.get(url, params=params)
response.raise_for_status()
data = response.json()
if "articles" not in data or len(data["articles"]) == 0:
raise ValueError("No articles found or invalid API response.")
articles = data["articles"]
formatted_articles = []
for i, article in enumerate(articles, start=1):
title = article.get("title", "No Title")
description = article.get("description", "No Description")
url = article.get("url", "No URL")
formatted_articles.append(
f"{i}. {title}\nDescription: {description}\nRead more: {url}\n"
)
return "\n".join(formatted_articles)
except requests.exceptions.RequestException as e:
print(f"Request Error: {e}")
raise
except ValueError as e:
print(f"Value Error: {e}")
raise
# # Example usage:
# api_key = "ceabc81a7d8f45febfedadb27177f3a3"
# print(fetch_financial_news(api_key))
# Initialize the agent
agent = Agent(
agent_name="Financial-Analysis-Agent",
# system_prompt=FINANCIAL_AGENT_SYS_PROMPT,
llm=model,
max_loops=2,
autosave=True,
# dynamic_temperature_enabled=True,
dashboard=False,
verbose=True,
streaming_on=True,
# interactive=True, # Set to False to disable interactive mode
dynamic_temperature_enabled=True,
saved_state_path="finance_agent.json",
# tools=[fetch_financial_news],
# stopping_token="Stop!",
# interactive=True,
# docs_folder="docs", # Enter your folder name
# pdf_path="docs/finance_agent.pdf",
# sop="Calculate the profit for a company.",
# sop_list=["Calculate the profit for a company."],
user_name="swarms_corp",
# # docs=
# # docs_folder="docs",
retry_attempts=3,
# context_length=1000,
# tool_schema = dict
context_length=200000,
# tool_schema=
# tools
# agent_ops_on=True,
# long_term_memory=ChromaDB(docs_folder="artifacts"),
)
def run_finance_agent(query: str) -> str:
"""
Runs the financial analysis agent with the given query.
Args:
query (str): The user query to run the agent with.
Returns:
str: The response from the financial analysis agent.
"""
query = fetch_financial_news(query)
print(query)
response = agent(query)
return response
# Example usage:
query = "Nvidia news"
response = run_finance_agent(f"Summarize the latest Nvidia financial news {query}")
print(response)