from unittest . mock import patch
import pytest
import torch
from swarms . models . huggingface import (
HuggingfaceLLM , # Replace with the actual import path
)
# Fixture for the class instance
@pytest.fixture
def llm_instance ( ) :
model_id = " NousResearch/Nous-Hermes-2-Vision-Alpha "
instance = HuggingfaceLLM ( model_id = model_id )
return instance
# Test for instantiation and attributes
def test_llm_initialization ( llm_instance ) :
assert llm_instance . model_id == " NousResearch/Nous-Hermes-2-Vision-Alpha "
assert llm_instance . max_length == 500
# ... add more assertions for all default attributes
# Parameterized test for setting devices
@pytest.mark.parametrize ( " device " , [ " cpu " , " cuda " ] )
def test_llm_set_device ( llm_instance , device ) :
llm_instance . set_device ( device )
assert llm_instance . device == device
# Test exception during initialization with a bad model_id
def test_llm_bad_model_initialization ( ) :
with pytest . raises ( Exception ) :
HuggingfaceLLM ( model_id = " unknown-model " )
# Mocking the tokenizer and model to test run method
@patch ( " swarms.models.huggingface.AutoTokenizer.from_pretrained " )
@patch (
" swarms.models.huggingface.AutoModelForCausalLM.from_pretrained "
)
def test_llm_run ( mock_model , mock_tokenizer , llm_instance ) :
mock_model . return_value . generate . return_value = " mocked output "
mock_tokenizer . return_value . encode . return_value = " mocked input "
result = llm_instance . run ( " test task " )
assert result == " mocked output "
# Async test (requires pytest-asyncio plugin)
@pytest.mark.asyncio
async def test_llm_run_async ( llm_instance ) :
result = await llm_instance . run_async ( " test task " )
assert isinstance ( result , str )
# Test for checking GPU availability
def test_llm_gpu_availability ( llm_instance ) :
# Assuming the test is running on a machine where the GPU availability is known
expected_result = torch . cuda . is_available ( )
assert llm_instance . gpu_available ( ) == expected_result
# Test for memory consumption reporting
def test_llm_memory_consumption ( llm_instance ) :
# Mocking torch.cuda functions for consistent results
with patch ( " torch.cuda.memory_allocated " , return_value = 1024 ) :
with patch ( " torch.cuda.memory_reserved " , return_value = 2048 ) :
memory = llm_instance . memory_consumption ( )
assert memory == { " allocated " : 1024 , " reserved " : 2048 }
# Test different initialization parameters
@pytest.mark.parametrize (
" model_id, max_length " ,
[
( " NousResearch/Nous-Hermes-2-Vision-Alpha " , 100 ) ,
( " microsoft/Orca-2-13b " , 200 ) ,
( " berkeley-nest/Starling-LM-7B-alpha " , None ) , # None to check default behavior
] ,
)
def test_llm_initialization_params ( model_id , max_length ) :
if max_length :
instance = HuggingfaceLLM (
model_id = model_id , max_length = max_length
)
assert instance . max_length == max_length
else :
instance = HuggingfaceLLM ( model_id = model_id )
assert (
instance . max_length == 500
) # Assuming 500 is the default max_length
# Test for setting an invalid device
def test_llm_set_invalid_device ( llm_instance ) :
with pytest . raises ( ValueError ) :
llm_instance . set_device ( " quantum_processor " )
# Mocking external API call to test run method without network
@patch ( " swarms.models.huggingface.HuggingfaceLLM.run " )
def test_llm_run_without_network ( mock_run , llm_instance ) :
mock_run . return_value = " mocked output "
result = llm_instance . run ( " test task without network " )
assert result == " mocked output "
# Test handling of empty input for the run method
def test_llm_run_empty_input ( llm_instance ) :
with pytest . raises ( ValueError ) :
llm_instance . run ( " " )
# Test the generation with a provided seed for reproducibility
@patch ( " swarms.models.huggingface.HuggingfaceLLM.run " )
def test_llm_run_with_seed ( mock_run , llm_instance ) :
seed = 42
llm_instance . set_seed ( seed )
# Assuming set_seed method affects the randomness in the model
# You would typically ensure that setting the seed gives reproducible results
mock_run . return_value = " mocked deterministic output "
result = llm_instance . run ( " test task " , seed = seed )
assert result == " mocked deterministic output "
# Test the output length is as expected
@patch ( " swarms.models.huggingface.HuggingfaceLLM.run " )
def test_llm_run_output_length ( mock_run , llm_instance ) :
input_text = " test task "
llm_instance . max_length = 50 # set a max_length for the output
mock_run . return_value = " mocked output " * 10 # some long text
result = llm_instance . run ( input_text )
assert len ( result . split ( ) ) < = llm_instance . max_length
# Test the tokenizer handling special tokens correctly
@patch ( " swarms.models.huggingface.HuggingfaceLLM._tokenizer.encode " )
@patch ( " swarms.models.huggingface.HuggingfaceLLM._tokenizer.decode " )
def test_llm_tokenizer_special_tokens (
mock_decode , mock_encode , llm_instance
) :
mock_encode . return_value = " encoded input with special tokens "
mock_decode . return_value = " decoded output with special tokens "
result = llm_instance . run ( " test task with special tokens " )
mock_encode . assert_called_once ( )
mock_decode . assert_called_once ( )
assert " special tokens " in result
# Test for correct handling of timeouts
@patch ( " swarms.models.huggingface.HuggingfaceLLM.run " )
def test_llm_timeout_handling ( mock_run , llm_instance ) :
mock_run . side_effect = TimeoutError
with pytest . raises ( TimeoutError ) :
llm_instance . run ( " test task with timeout " )
# Test for response time within a threshold (performance test)
@patch ( " swarms.models.huggingface.HuggingfaceLLM.run " )
def test_llm_response_time ( mock_run , llm_instance ) :
import time
mock_run . return_value = " mocked output "
start_time = time . time ( )
llm_instance . run ( " test task for response time " )
end_time = time . time ( )
assert (
end_time - start_time < 1
) # Assuming the response should be faster than 1 second
# Test the logging of a warning for long inputs
@patch ( " swarms.models.huggingface.logging.warning " )
def test_llm_long_input_warning ( mock_warning , llm_instance ) :
long_input = " x " * 10000 # input longer than the typical limit
llm_instance . run ( long_input )
mock_warning . assert_called_once ( )
# Test for run method behavior when model raises an exception
@patch (
" swarms.models.huggingface.HuggingfaceLLM._model.generate " ,
side_effect = RuntimeError ,
)
def test_llm_run_model_exception ( mock_generate , llm_instance ) :
with pytest . raises ( RuntimeError ) :
llm_instance . run ( " test task when model fails " )
# Test the behavior when GPU is forced but not available
@patch ( " torch.cuda.is_available " , return_value = False )
def test_llm_force_gpu_when_unavailable (
mock_is_available , llm_instance
) :
with pytest . raises ( EnvironmentError ) :
llm_instance . set_device (
" cuda "
) # Attempt to set CUDA when it's not available
# Test for proper cleanup after model use (releasing resources)
@patch ( " swarms.models.huggingface.HuggingfaceLLM._model " )
def test_llm_cleanup ( mock_model , mock_tokenizer , llm_instance ) :
llm_instance . cleanup ( )
# Assuming cleanup method is meant to free resources
mock_model . delete . assert_called_once ( )
mock_tokenizer . delete . assert_called_once ( )
# Test model's ability to handle multilingual input
@patch ( " swarms.models.huggingface.HuggingfaceLLM.run " )
def test_llm_multilingual_input ( mock_run , llm_instance ) :
mock_run . return_value = " mocked multilingual output "
multilingual_input = " Bonjour, ceci est un test multilingue. "
result = llm_instance . run ( multilingual_input )
assert isinstance (
result , str
) # Simple check to ensure output is string type
# Test caching mechanism to prevent re-running the same inputs
@patch ( " swarms.models.huggingface.HuggingfaceLLM.run " )
def test_llm_caching_mechanism ( mock_run , llm_instance ) :
input_text = " test caching mechanism "
mock_run . return_value = " cached output "
# Run the input twice
first_run_result = llm_instance . run ( input_text )
second_run_result = llm_instance . run ( input_text )
mock_run . assert_called_once ( ) # Should only be called once due to caching
assert first_run_result == second_run_result
# These tests are provided as examples. In real-world scenarios, you will need to adapt these tests to the actual logic of your `HuggingfaceLLM` class.
# For instance, "mock_model.delete.assert_called_once()" and similar lines are based on hypothetical methods and behaviors that you need to replace with actual implementations.