|
|
|
import os
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
from swarms import Agent, SequentialWorkflow
|
|
|
|
from swarm_models import OpenAIChat
|
|
|
|
|
|
|
|
load_dotenv()
|
|
|
|
|
|
|
|
# Get the OpenAI API key from the environment variable
|
|
|
|
api_key = os.getenv("GROQ_API_KEY")
|
|
|
|
|
|
|
|
# Model
|
|
|
|
model = OpenAIChat(
|
|
|
|
openai_api_base="https://api.groq.com/openai/v1",
|
|
|
|
openai_api_key=api_key,
|
|
|
|
model_name="llama-3.1-70b-versatile",
|
|
|
|
temperature=0.1,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# Initialize specialized agents
|
|
|
|
data_extractor_agent = Agent(
|
|
|
|
agent_name="Data-Extractor",
|
|
|
|
system_prompt=None,
|
|
|
|
llm=model,
|
|
|
|
max_loops=1,
|
|
|
|
autosave=True,
|
|
|
|
verbose=True,
|
|
|
|
dynamic_temperature_enabled=True,
|
|
|
|
saved_state_path="data_extractor_agent.json",
|
|
|
|
user_name="pe_firm",
|
|
|
|
retry_attempts=1,
|
|
|
|
context_length=200000,
|
|
|
|
output_type="string",
|
|
|
|
)
|
|
|
|
|
|
|
|
summarizer_agent = Agent(
|
|
|
|
agent_name="Document-Summarizer",
|
|
|
|
system_prompt=None,
|
|
|
|
llm=model,
|
|
|
|
max_loops=1,
|
|
|
|
autosave=True,
|
|
|
|
verbose=True,
|
|
|
|
dynamic_temperature_enabled=True,
|
|
|
|
saved_state_path="summarizer_agent.json",
|
|
|
|
user_name="pe_firm",
|
|
|
|
retry_attempts=1,
|
|
|
|
context_length=200000,
|
|
|
|
output_type="string",
|
|
|
|
)
|
|
|
|
|
|
|
|
financial_analyst_agent = Agent(
|
|
|
|
agent_name="Financial-Analyst",
|
|
|
|
system_prompt=None,
|
|
|
|
llm=model,
|
|
|
|
max_loops=1,
|
|
|
|
autosave=True,
|
|
|
|
verbose=True,
|
|
|
|
dynamic_temperature_enabled=True,
|
|
|
|
saved_state_path="financial_analyst_agent.json",
|
|
|
|
user_name="pe_firm",
|
|
|
|
retry_attempts=1,
|
|
|
|
context_length=200000,
|
|
|
|
output_type="string",
|
|
|
|
)
|
|
|
|
|
|
|
|
market_analyst_agent = Agent(
|
|
|
|
agent_name="Market-Analyst",
|
|
|
|
system_prompt=None,
|
|
|
|
llm=model,
|
|
|
|
max_loops=1,
|
|
|
|
autosave=True,
|
|
|
|
verbose=True,
|
|
|
|
dynamic_temperature_enabled=True,
|
|
|
|
saved_state_path="market_analyst_agent.json",
|
|
|
|
user_name="pe_firm",
|
|
|
|
retry_attempts=1,
|
|
|
|
context_length=200000,
|
|
|
|
output_type="string",
|
|
|
|
)
|
|
|
|
|
|
|
|
operational_analyst_agent = Agent(
|
|
|
|
agent_name="Operational-Analyst",
|
|
|
|
system_prompt=None,
|
|
|
|
llm=model,
|
|
|
|
max_loops=1,
|
|
|
|
autosave=True,
|
|
|
|
verbose=True,
|
|
|
|
dynamic_temperature_enabled=True,
|
|
|
|
saved_state_path="operational_analyst_agent.json",
|
|
|
|
user_name="pe_firm",
|
|
|
|
retry_attempts=1,
|
|
|
|
context_length=200000,
|
|
|
|
output_type="string",
|
|
|
|
)
|
|
|
|
|
|
|
|
# Initialize the SwarmRouter
|
|
|
|
router = SequentialWorkflow(
|
|
|
|
name="pe-document-analysis-swarm",
|
|
|
|
description="Analyze documents for private equity due diligence and investment decision-making",
|
|
|
|
max_loops=1,
|
|
|
|
agents=[
|
|
|
|
data_extractor_agent,
|
|
|
|
summarizer_agent,
|
|
|
|
financial_analyst_agent,
|
|
|
|
market_analyst_agent,
|
|
|
|
operational_analyst_agent,
|
|
|
|
],
|
|
|
|
output_type="all",
|
|
|
|
)
|
|
|
|
|
|
|
|
# Example usage
|
|
|
|
if __name__ == "__main__":
|
|
|
|
# Run a comprehensive private equity document analysis task
|
|
|
|
result = router.run(
|
|
|
|
"Where is the best place to find template term sheets for series A startups. Provide links and references",
|
|
|
|
img=None,
|
|
|
|
)
|
|
|
|
print(result)
|