You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
89 lines
2.4 KiB
89 lines
2.4 KiB
11 months ago
|
from vllm import LLM
|
||
|
from swarms import AbstractLLM, Agent, ChromaDB
|
||
|
|
||
|
|
||
|
# Making an instance of the VLLM class
|
||
|
class vLLMLM(AbstractLLM):
|
||
|
"""
|
||
|
This class represents a variant of the Language Model (LLM) called vLLMLM.
|
||
|
It extends the AbstractLLM class and provides additional functionality.
|
||
|
|
||
|
Args:
|
||
|
model_name (str): The name of the LLM model to use. Defaults to "acebook/opt-13b".
|
||
|
tensor_parallel_size (int): The size of the tensor parallelism. Defaults to 4.
|
||
|
*args: Variable length argument list.
|
||
|
**kwargs: Arbitrary keyword arguments.
|
||
|
|
||
|
Attributes:
|
||
|
model_name (str): The name of the LLM model.
|
||
|
tensor_parallel_size (int): The size of the tensor parallelism.
|
||
|
llm (LLM): An instance of the LLM class.
|
||
|
|
||
|
Methods:
|
||
|
run(task: str, *args, **kwargs): Runs the LLM model to generate output for the given task.
|
||
|
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
model_name: str = "acebook/opt-13b",
|
||
|
tensor_parallel_size: int = 4,
|
||
|
*args,
|
||
|
**kwargs
|
||
|
):
|
||
|
super().__init__(*args, **kwargs)
|
||
|
self.model_name = model_name
|
||
|
self.tensor_parallel_size = tensor_parallel_size
|
||
|
|
||
|
self.llm = LLM(
|
||
|
model_name=self.model_name,
|
||
|
tensor_parallel_size=self.tensor_parallel_size,
|
||
|
)
|
||
|
|
||
|
def run(self, task: str, *args, **kwargs):
|
||
|
"""
|
||
|
Runs the LLM model to generate output for the given task.
|
||
|
|
||
|
Args:
|
||
|
task (str): The task for which to generate output.
|
||
|
*args: Variable length argument list.
|
||
|
**kwargs: Arbitrary keyword arguments.
|
||
|
|
||
|
Returns:
|
||
|
str: The generated output for the given task.
|
||
|
|
||
|
"""
|
||
|
return self.llm.generate(task)
|
||
|
|
||
|
|
||
|
# Initializing the agent with the vLLMLM instance and other parameters
|
||
|
model = vLLMLM(
|
||
|
"facebook/opt-13b",
|
||
|
tensor_parallel_size=4,
|
||
|
)
|
||
|
|
||
|
# Defining the task
|
||
|
task = "What are the symptoms of COVID-19?"
|
||
|
|
||
|
# Running the agent with the specified task
|
||
|
out = model.run(task)
|
||
|
|
||
|
|
||
|
# Integrate Agent
|
||
|
agent = Agent(
|
||
|
agent_name="Doctor agent",
|
||
|
agent_description=(
|
||
|
"This agent provides information about COVID-19 symptoms."
|
||
|
),
|
||
|
llm=model,
|
||
|
max_loops="auto",
|
||
|
autosave=True,
|
||
|
verbose=True,
|
||
|
long_term_memory=ChromaDB(
|
||
|
metric="cosine",
|
||
|
n_results=3,
|
||
|
output_dir="results",
|
||
|
docs_folder="docs",
|
||
|
),
|
||
|
stopping_condition="finish",
|
||
|
)
|