You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/tests/models/test_biogpt.py

230 lines
6.7 KiB

from unittest.mock import patch
# Import necessary modules
import pytest
import torch
from transformers import BioGptForCausalLM, BioGptTokenizer
# Fixture for BioGPT instance
@pytest.fixture
def biogpt_instance():
11 months ago
from swarms.models import BioGPT
return BioGPT()
# 36. Test if BioGPT provides a response for a simple biomedical question
def test_biomedical_response_1(biogpt_instance):
question = "What are the functions of the mitochondria?"
response = biogpt_instance(question)
11 months ago
assert response
assert isinstance(response, str)
# 37. Test for a genetics-based question
def test_genetics_response(biogpt_instance):
question = "Can you explain the Mendelian inheritance?"
response = biogpt_instance(question)
11 months ago
assert response
assert isinstance(response, str)
# 38. Test for a question about viruses
def test_virus_response(biogpt_instance):
question = "How do RNA viruses replicate?"
response = biogpt_instance(question)
11 months ago
assert response
assert isinstance(response, str)
# 39. Test for a cell biology related question
def test_cell_biology_response(biogpt_instance):
question = "Describe the cell cycle and its phases."
response = biogpt_instance(question)
11 months ago
assert response
assert isinstance(response, str)
# 40. Test for a question about protein structure
def test_protein_structure_response(biogpt_instance):
question = (
1 year ago
"What's the difference between alpha helix and beta sheet"
" structures in proteins?"
)
response = biogpt_instance(question)
11 months ago
assert response
assert isinstance(response, str)
# 41. Test for a pharmacology question
def test_pharmacology_response(biogpt_instance):
question = "How do beta blockers work?"
response = biogpt_instance(question)
11 months ago
assert response
assert isinstance(response, str)
# 42. Test for an anatomy-based question
def test_anatomy_response(biogpt_instance):
question = "Describe the structure of the human heart."
response = biogpt_instance(question)
11 months ago
assert response
assert isinstance(response, str)
# 43. Test for a question about bioinformatics
def test_bioinformatics_response(biogpt_instance):
question = "What is a BLAST search?"
response = biogpt_instance(question)
11 months ago
assert response
assert isinstance(response, str)
# 44. Test for a neuroscience question
def test_neuroscience_response(biogpt_instance):
1 year ago
question = (
"Explain the function of synapses in the nervous system."
)
response = biogpt_instance(question)
11 months ago
assert response
assert isinstance(response, str)
# 45. Test for an immunology question
def test_immunology_response(biogpt_instance):
question = "What is the role of T cells in the immune response?"
response = biogpt_instance(question)
11 months ago
assert response
assert isinstance(response, str)
def test_init(bio_gpt):
assert bio_gpt.model_name == "microsoft/biogpt"
assert bio_gpt.max_length == 500
assert bio_gpt.num_return_sequences == 5
assert bio_gpt.do_sample is True
assert bio_gpt.min_length == 100
def test_call(bio_gpt, monkeypatch):
def mock_pipeline(*args, **kwargs):
class MockGenerator:
def __call__(self, text, **kwargs):
return ["Generated text"]
return MockGenerator()
monkeypatch.setattr("transformers.pipeline", mock_pipeline)
result = bio_gpt("Input text")
assert result == ["Generated text"]
def test_get_features(bio_gpt):
features = bio_gpt.get_features("Input text")
assert "last_hidden_state" in features
def test_beam_search_decoding(bio_gpt):
generated_text = bio_gpt.beam_search_decoding("Input text")
assert isinstance(generated_text, str)
def test_set_pretrained_model(bio_gpt):
bio_gpt.set_pretrained_model("new_model")
assert bio_gpt.model_name == "new_model"
def test_get_config(bio_gpt):
config = bio_gpt.get_config()
assert "vocab_size" in config
def test_save_load_model(tmp_path, bio_gpt):
bio_gpt.save_model(tmp_path)
bio_gpt.load_from_path(tmp_path)
assert bio_gpt.model_name == "microsoft/biogpt"
def test_print_model(capsys, bio_gpt):
bio_gpt.print_model()
captured = capsys.readouterr()
assert "BioGptForCausalLM" in captured.out
# 26. Test if set_pretrained_model changes the model_name
def test_set_pretrained_model_name_change(biogpt_instance):
biogpt_instance.set_pretrained_model("new_model_name")
assert biogpt_instance.model_name == "new_model_name"
# 27. Test get_config return type
def test_get_config_return_type(biogpt_instance):
config = biogpt_instance.get_config()
assert isinstance(config, type(biogpt_instance.model.config))
# 28. Test saving model functionality by checking if files are created
@patch.object(BioGptForCausalLM, "save_pretrained")
@patch.object(BioGptTokenizer, "save_pretrained")
1 year ago
def test_save_model(
mock_save_model, mock_save_tokenizer, biogpt_instance
):
path = "test_path"
biogpt_instance.save_model(path)
mock_save_model.assert_called_once_with(path)
mock_save_tokenizer.assert_called_once_with(path)
# 29. Test loading model from path
@patch.object(BioGptForCausalLM, "from_pretrained")
@patch.object(BioGptTokenizer, "from_pretrained")
1 year ago
def test_load_from_path(
mock_load_model, mock_load_tokenizer, biogpt_instance
):
path = "test_path"
biogpt_instance.load_from_path(path)
mock_load_model.assert_called_once_with(path)
mock_load_tokenizer.assert_called_once_with(path)
# 30. Test print_model doesn't raise any error
def test_print_model_metadata(biogpt_instance):
try:
biogpt_instance.print_model()
except Exception as e:
pytest.fail(f"print_model() raised an exception: {e}")
# 31. Test that beam_search_decoding uses the correct number of beams
@patch.object(BioGptForCausalLM, "generate")
1 year ago
def test_beam_search_decoding_num_beams(
mock_generate, biogpt_instance
):
biogpt_instance.beam_search_decoding("test_sentence", num_beams=7)
_, kwargs = mock_generate.call_args
assert kwargs["num_beams"] == 7
# 32. Test if beam_search_decoding handles early_stopping
@patch.object(BioGptForCausalLM, "generate")
1 year ago
def test_beam_search_decoding_early_stopping(
mock_generate, biogpt_instance
):
biogpt_instance.beam_search_decoding(
"test_sentence", early_stopping=False
)
_, kwargs = mock_generate.call_args
assert kwargs["early_stopping"] is False
# 33. Test get_features return type
def test_get_features_return_type(biogpt_instance):
result = biogpt_instance.get_features("This is a sample text.")
assert isinstance(result, torch.nn.modules.module.Module)
# 34. Test if default model is set correctly during initialization
def test_default_model_name(biogpt_instance):
assert biogpt_instance.model_name == "microsoft/biogpt"