You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
110 lines
3.9 KiB
110 lines
3.9 KiB
7 months ago
|
import threading
|
||
|
from dataclasses import dataclass, field
|
||
|
from typing import Callable, List, Optional, Any
|
||
|
|
||
|
from swarms.utils.logger import logger
|
||
|
from swarms.structs.agent import Agent
|
||
|
from swarms.structs.base_workflow import BaseWorkflow
|
||
|
from swarms import OpenAIChat
|
||
|
import os
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class ConcurrentWorkflow(BaseWorkflow):
|
||
|
"""
|
||
|
ConcurrentWorkflow class for running a set of tasks concurrently using N number of autonomous agents.
|
||
|
|
||
|
Args:
|
||
|
max_workers (int): The maximum number of workers to use for the threading.Thread.
|
||
|
autosave (bool): Whether to save the state of the workflow to a file. Default is False.
|
||
|
saved_state_filepath (str): The filepath to save the state of the workflow to. Default is "runs/concurrent_workflow.json".
|
||
|
print_results (bool): Whether to print the results of each task. Default is False.
|
||
|
return_results (bool): Whether to return the results of each task. Default is False.
|
||
|
use_processes (bool): Whether to use processes instead of threads. Default is False.
|
||
|
|
||
|
Examples:
|
||
|
>>> from swarms.models import OpenAIChat
|
||
|
>>> from swarms.structs import ConcurrentWorkflow
|
||
|
>>> llm = OpenAIChat(openai_api_key="")
|
||
|
>>> workflow = ConcurrentWorkflow(max_workers=5, agents=[llm])
|
||
|
>>> workflow.run()
|
||
|
"""
|
||
|
|
||
|
max_loops: int = 1
|
||
|
max_workers: int = 5
|
||
|
autosave: bool = False
|
||
|
agents: List[Agent] = field(default_factory=list)
|
||
|
saved_state_filepath: Optional[str] = "runs/concurrent_workflow.json"
|
||
|
print_results: bool = True # Modified: Set print_results to True
|
||
|
return_results: bool = False
|
||
|
stopping_condition: Optional[Callable] = None
|
||
|
|
||
|
def run(self, task: Optional[str] = None, *args, **kwargs) -> Optional[List[Any]]:
|
||
|
"""
|
||
|
Executes the tasks in parallel using multiple threads.
|
||
|
|
||
|
Args:
|
||
|
task (Optional[str]): A task description if applicable.
|
||
|
*args: Additional arguments.
|
||
|
**kwargs: Additional keyword arguments.
|
||
|
|
||
|
Returns:
|
||
|
Optional[List[Any]]: A list of the results of each task, if return_results is True. Otherwise, returns None.
|
||
|
"""
|
||
|
loop = 0
|
||
|
results = []
|
||
|
|
||
|
while loop < self.max_loops:
|
||
|
if not self.agents:
|
||
|
logger.warning("No agents found in the workflow.")
|
||
|
break
|
||
|
|
||
|
threads = [threading.Thread(target=self.execute_agent, args=(agent, task)) for agent in self.agents]
|
||
|
|
||
|
for thread in threads:
|
||
|
thread.start()
|
||
|
|
||
|
for thread in threads:
|
||
|
thread.join()
|
||
|
|
||
|
if self.return_results:
|
||
|
results.extend([thread.result for thread in threads if hasattr(thread, 'result')])
|
||
|
|
||
|
loop += 1
|
||
|
|
||
|
if self.stopping_condition and self.stopping_condition(results):
|
||
|
break
|
||
|
|
||
|
return results if self.return_results else None
|
||
|
|
||
|
def list_agents(self):
|
||
|
"""Prints a list of the agents in the workflow."""
|
||
|
for agent in self.agents:
|
||
|
logger.info(agent)
|
||
|
|
||
|
def save(self):
|
||
|
"""Saves the state of the workflow to a file."""
|
||
|
self.save_state(self.saved_state_filepath)
|
||
|
|
||
|
def execute_agent(self, agent: Agent, task: Optional[str] = None, *args, **kwargs):
|
||
|
try:
|
||
|
result = agent.run(task, *args, **kwargs)
|
||
|
if self.print_results:
|
||
|
logger.info(f"Agent {agent}: {result}")
|
||
|
if self.return_results:
|
||
|
return result
|
||
|
except Exception as e:
|
||
|
logger.error(f"Agent {agent} generated an exception: {e}")
|
||
|
|
||
|
|
||
|
|
||
|
api_key = os.environ["OPENAI_API_KEY"]
|
||
|
|
||
|
# Model
|
||
|
swarm = ConcurrentWorkflow(
|
||
|
agents = [Agent(llm=OpenAIChat(openai_api_key=api_key, max_tokens=4000,), max_loops=4, dashboard=False)],
|
||
|
)
|
||
|
|
||
|
|
||
|
# Run the workflow
|
||
|
swarm.run("Generate a report on the top 3 biggest expenses for small businesses and how businesses can save 20%")
|