You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/docs/swarms_cloud/mcs_api.md

727 lines
18 KiB

4 weeks ago
# Medical Coder Swarm API Documentation
Base URL: `https://mcs-285321057562.us-central1.run.app`
## Table of Contents
- [Authentication](#authentication)
- [Rate Limits](#rate-limits)
- [Endpoints](#endpoints)
- [Health Check](#health-check)
- [Run Medical Coder](#run-medical-coder)
- [Run Batch Medical Coder](#run-batch-medical-coder)
- [Get Patient Data](#get-patient-data)
- [Get All Patients](#get-all-patients)
- [Code Examples](#code-examples)
- [Error Handling](#error-handling)
## Authentication
Authentication details will be provided by the MCS team. Contact support for API credentials.
## Rate Limits
| Endpoint | GET Rate Limit Status |
|----------|----------------------|
| `GET /rate-limits` | Returns current rate limit status for your IP address |
## Endpoints
### Health Check
Check if the API is operational.
| Method | Endpoint | Description |
|--------|----------|-------------|
| `GET` | `/health` | Returns 200 OK if service is running |
### Run Medical Coder
Process a single patient case through the Medical Coder Swarm.
| Method | Endpoint | Description |
|--------|----------|-------------|
| `POST` | `/v1/medical-coder/run` | Process a single patient case |
**Request Body Parameters:**
| Parameter | Type | Required | Description |
|-----------|------|----------|-------------|
| patient_id | string | Yes | Unique identifier for the patient |
| case_description | string | Yes | Medical case details to be processed |
**Response Schema:**
| Field | Type | Description |
|-------|------|-------------|
| patient_id | string | Patient identifier |
| case_data | string | Processed case data |
### Run Batch Medical Coder
Process multiple patient cases in a single request.
| Method | Endpoint | Description |
|--------|----------|-------------|
| `POST` | `/v1/medical-coder/run-batch` | Process multiple patient cases |
**Request Body Parameters:**
| Parameter | Type | Required | Description |
|-----------|------|----------|-------------|
| cases | array | Yes | Array of PatientCase objects |
### Get Patient Data
Retrieve data for a specific patient.
| Method | Endpoint | Description |
|--------|----------|-------------|
| `GET` | `/v1/medical-coder/patient/{patient_id}` | Get patient data by ID |
**Path Parameters:**
| Parameter | Type | Required | Description |
|-----------|------|----------|-------------|
| patient_id | string | Yes | Patient identifier |
### Get All Patients
Retrieve data for all patients.
| Method | Endpoint | Description |
|--------|----------|-------------|
| `GET` | `/v1/medical-coder/patients` | Get all patient data |
## Code Examples
### Python
```python
import requests
import json
class MCSClient:
def __init__(self, base_url="https://mcs.swarms.ai", api_key=None):
self.base_url = base_url
self.headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {api_key}" if api_key else None
}
def run_medical_coder(self, patient_id, case_description):
endpoint = f"{self.base_url}/v1/medical-coder/run"
payload = {
"patient_id": patient_id,
"case_description": case_description
}
response = requests.post(endpoint, json=payload, headers=self.headers)
return response.json()
def run_batch(self, cases):
endpoint = f"{self.base_url}/v1/medical-coder/run-batch"
payload = {"cases": cases}
response = requests.post(endpoint, json=payload, headers=self.headers)
return response.json()
# Usage example
client = MCSClient(api_key="your_api_key")
result = client.run_medical_coder("P123", "Patient presents with...")
```
### Next.js (TypeScript)
```typescript
// types.ts
interface PatientCase {
patient_id: string;
case_description: string;
}
interface QueryResponse {
patient_id: string;
case_data: string;
}
// api.ts
export class MCSApi {
private baseUrl: string;
private apiKey: string;
constructor(apiKey: string, baseUrl = 'https://mcs.swarms.ai') {
this.baseUrl = baseUrl;
this.apiKey = apiKey;
}
private async fetchWithAuth(endpoint: string, options: RequestInit = {}) {
const response = await fetch(`${this.baseUrl}${endpoint}`, {
...options,
headers: {
'Content-Type': 'application/json',
'Authorization': `Bearer ${this.apiKey}`,
...options.headers,
},
});
return response.json();
}
async runMedicalCoder(patientCase: PatientCase): Promise<QueryResponse> {
return this.fetchWithAuth('/v1/medical-coder/run', {
method: 'POST',
body: JSON.stringify(patientCase),
});
}
async getPatientData(patientId: string): Promise<QueryResponse> {
return this.fetchWithAuth(`/v1/medical-coder/patient/${patientId}`);
}
}
// Usage in component
const mcsApi = new MCSApi(process.env.MCS_API_KEY);
export async function ProcessPatientCase({ patientId, caseDescription }) {
const result = await mcsApi.runMedicalCoder({
patient_id: patientId,
case_description: caseDescription,
});
return result;
}
```
### Go
```go
package mcs
import (
"bytes"
"encoding/json"
"fmt"
"net/http"
)
type MCSClient struct {
BaseURL string
APIKey string
Client *http.Client
}
type PatientCase struct {
PatientID string `json:"patient_id"`
CaseDescription string `json:"case_description"`
}
type QueryResponse struct {
PatientID string `json:"patient_id"`
CaseData string `json:"case_data"`
}
func NewMCSClient(apiKey string) *MCSClient {
return &MCSClient{
BaseURL: "https://mcs.swarms.ai",
APIKey: apiKey,
Client: &http.Client{},
}
}
func (c *MCSClient) RunMedicalCoder(patientCase PatientCase) (*QueryResponse, error) {
payload, err := json.Marshal(patientCase)
if err != nil {
return nil, err
}
req, err := http.NewRequest("POST",
fmt.Sprintf("%s/v1/medical-coder/run", c.BaseURL),
bytes.NewBuffer(payload))
if err != nil {
return nil, err
}
req.Header.Set("Content-Type", "application/json")
req.Header.Set("Authorization", fmt.Sprintf("Bearer %s", c.APIKey))
resp, err := c.Client.Do(req)
if err != nil {
return nil, err
}
defer resp.Body.Close()
var result QueryResponse
if err := json.NewDecoder(resp.Body).Decode(&result); err != nil {
return nil, err
}
return &result, nil
}
// Usage example
func main() {
client := NewMCSClient("your_api_key")
result, err := client.RunMedicalCoder(PatientCase{
PatientID: "P123",
CaseDescription: "Patient presents with...",
})
if err != nil {
panic(err)
}
fmt.Printf("Result: %+v\n", result)
}
```
3 weeks ago
## C Sharp
3 weeks ago
````txt
3 weeks ago
using System;
using System.Net.Http;
using System.Text;
using System.Text.Json;
using System.Threading.Tasks;
namespace MedicalCoderSwarm
{
public class PatientCase
{
public string PatientId { get; set; }
public string CaseDescription { get; set; }
}
public class QueryResponse
{
public string PatientId { get; set; }
public string CaseData { get; set; }
}
public class MCSClient : IDisposable
{
private readonly HttpClient _httpClient;
private readonly string _baseUrl;
public MCSClient(string apiKey, string baseUrl = "https://mcs-285321057562.us-central1.run.app")
{
_baseUrl = baseUrl;
_httpClient = new HttpClient();
_httpClient.DefaultRequestHeaders.Add("Authorization", $"Bearer {apiKey}");
_httpClient.DefaultRequestHeaders.Add("Content-Type", "application/json");
}
public async Task<QueryResponse> RunMedicalCoderAsync(string patientId, string caseDescription)
{
var payload = new PatientCase
{
PatientId = patientId,
CaseDescription = caseDescription
};
var content = new StringContent(
JsonSerializer.Serialize(payload),
Encoding.UTF8,
"application/json"
);
var response = await _httpClient.PostAsync(
$"{_baseUrl}/v1/medical-coder/run",
content
);
response.EnsureSuccessStatusCode();
var responseContent = await response.Content.ReadAsStringAsync();
return JsonSerializer.Deserialize<QueryResponse>(responseContent);
}
public async Task<QueryResponse> GetPatientDataAsync(string patientId)
{
var response = await _httpClient.GetAsync(
$"{_baseUrl}/v1/medical-coder/patient/{patientId}"
);
response.EnsureSuccessStatusCode();
var responseContent = await response.Content.ReadAsStringAsync();
return JsonSerializer.Deserialize<QueryResponse>(responseContent);
}
public async Task<bool> HealthCheckAsync()
{
var response = await _httpClient.GetAsync($"{_baseUrl}/health");
return response.IsSuccessStatusCode;
}
public void Dispose()
{
_httpClient?.Dispose();
}
}
// Example usage
public class Program
{
public static async Task Main()
{
try
{
using var client = new MCSClient("your_api_key");
// Check API health
var isHealthy = await client.HealthCheckAsync();
Console.WriteLine($"API Health: {(isHealthy ? "Healthy" : "Unhealthy")}");
// Process a single case
var result = await client.RunMedicalCoderAsync(
"P123",
"Patient presents with acute respiratory symptoms..."
);
Console.WriteLine($"Processed case for patient {result.PatientId}");
Console.WriteLine($"Case data: {result.CaseData}");
// Get patient data
var patientData = await client.GetPatientDataAsync("P123");
Console.WriteLine($"Retrieved data for patient {patientData.PatientId}");
}
catch (HttpRequestException ex)
{
Console.WriteLine($"API request failed: {ex.Message}");
}
catch (Exception ex)
{
Console.WriteLine($"An error occurred: {ex.Message}");
}
}
}
}
```
4 weeks ago
## Error Handling
The API uses standard HTTP status codes and returns detailed error messages in JSON format.
**Common Status Codes:**
| Status Code | Description |
|-------------|-------------|
| 200 | Success |
| 400 | Bad Request - Invalid input |
| 401 | Unauthorized - Invalid or missing API key |
| 422 | Validation Error - Request validation failed |
| 429 | Too Many Requests - Rate limit exceeded |
| 500 | Internal Server Error |
**Error Response Format:**
```json
{
"detail": [
{
"loc": ["body", "patient_id"],
"msg": "field required",
"type": "value_error.missing"
}
]
}
```
# MCS Python Client Documentation
## Installation
```bash
pip install mcs
```
## Quick Start
```python
from mcs import MCSClient, PatientCase
# Using context manager (recommended)
with MCSClient() as client:
# Process a single case
response = client.run_medical_coder(
patient_id="P123",
case_description="Patient presents with acute respiratory symptoms..."
)
print(f"Processed case: {response.case_data}")
# Process multiple cases
cases = [
PatientCase("P124", "Case 1 description..."),
PatientCase("P125", "Case 2 description...")
]
batch_response = client.run_batch(cases)
```
## Client Configuration
### Constructor Arguments
| Parameter | Type | Required | Default | Description |
|-----------|------|----------|---------|-------------|
| api_key | str | Yes | - | Authentication API key |
| base_url | str | No | "https://mcs.swarms.ai" | API base URL |
| timeout | int | No | 30 | Request timeout in seconds |
| max_retries | int | No | 3 | Maximum retry attempts |
| logger_name | str | No | "mcs" | Name for the logger instance |
### Example Configuration
```python
client = MCSClient(
base_url="https://custom-url.example.com",
timeout=45,
max_retries=5,
logger_name="custom_logger"
)
```
## Data Models
### PatientCase
| Field | Type | Required | Description |
|-------|------|----------|-------------|
| patient_id | str | Yes | Unique identifier for the patient |
| case_description | str | Yes | Medical case details |
### QueryResponse
| Field | Type | Description |
|-------|------|-------------|
| patient_id | str | Patient identifier |
| case_data | str | Processed case data |
## Methods
### run_medical_coder
Process a single patient case.
```python
def run_medical_coder(
self,
patient_id: str,
case_description: str
) -> QueryResponse:
```
**Arguments:**
| Parameter | Type | Required | Description |
|-----------|------|----------|-------------|
| patient_id | str | Yes | Patient identifier |
| case_description | str | Yes | Case details |
**Example:**
```python
response = client.run_medical_coder(
patient_id="P123",
case_description="Patient presents with..."
)
print(response.case_data)
```
### run_batch
Process multiple patient cases in batch.
```python
def run_batch(
self,
cases: List[PatientCase]
) -> List[QueryResponse]:
```
**Arguments:**
| Parameter | Type | Required | Description |
|-----------|------|----------|-------------|
| cases | List[PatientCase] | Yes | List of patient cases |
**Example:**
```python
cases = [
PatientCase("P124", "Case 1 description..."),
PatientCase("P125", "Case 2 description...")
]
responses = client.run_batch(cases)
for response in responses:
print(f"Patient {response.patient_id}: {response.case_data}")
```
### get_patient_data
Retrieve data for a specific patient.
```python
def get_patient_data(
self,
patient_id: str
) -> QueryResponse:
```
**Example:**
```python
patient_data = client.get_patient_data("P123")
print(f"Patient data: {patient_data.case_data}")
```
### get_all_patients
Retrieve data for all patients.
```python
def get_all_patients(self) -> List[QueryResponse]:
```
**Example:**
```python
all_patients = client.get_all_patients()
for patient in all_patients:
print(f"Patient {patient.patient_id}: {patient.case_data}")
```
### get_rate_limits
Get current rate limit status.
```python
def get_rate_limits(self) -> Dict[str, Any]:
```
**Example:**
```python
rate_limits = client.get_rate_limits()
print(f"Rate limit status: {rate_limits}")
```
### health_check
Check if the API is operational.
```python
def health_check(self) -> bool:
```
**Example:**
```python
is_healthy = client.health_check()
print(f"API health: {'Healthy' if is_healthy else 'Unhealthy'}")
```
## Error Handling
### Exception Hierarchy
| Exception | Description |
|-----------|-------------|
| MCSClientError | Base exception for all client errors |
| RateLimitError | Raised when API rate limit is exceeded |
| AuthenticationError | Raised when API authentication fails |
| ValidationError | Raised when request validation fails |
### Example Error Handling
```python
from mcs import MCSClient, MCSClientError, RateLimitError
with MCSClient() as client:
try:
response = client.run_medical_coder("P123", "Case description...")
except RateLimitError:
print("Rate limit exceeded. Please wait before retrying.")
except MCSClientError as e:
print(f"An error occurred: {str(e)}")
```
## Advanced Usage
### Retry Configuration
The client implements two levels of retry logic:
1. Connection-level retries (using `HTTPAdapter`):
```python
client = MCSClient(
,
max_retries=5 # Adjusts connection-level retries
)
```
2. Application-level retries (using `tenacity`):
```python
from tenacity import retry, stop_after_attempt
@retry(stop=stop_after_attempt(5))
def process_with_custom_retries():
with MCSClient() as client:
return client.run_medical_coder("P123", "Case description...")
```
### Batch Processing with Progress Tracking
```python
from tqdm import tqdm
with MCSClient() as client:
cases = [
PatientCase(f"P{i}", f"Case description {i}")
for i in range(100)
]
# Process in smaller batches
batch_size = 10
results = []
for i in tqdm(range(0, len(cases), batch_size)):
batch = cases[i:i + batch_size]
batch_results = client.run_batch(batch)
results.extend(batch_results)
```
## Best Practices
1. **Always use context managers:**
```python
with MCSClient() as client:
# Your code here
pass
```
2. **Handle rate limits appropriately:**
```python
from time import sleep
def process_with_rate_limit_handling():
with MCSClient() as client:
try:
return client.run_medical_coder("P123", "Case...")
except RateLimitError:
sleep(60) # Wait before retry
return client.run_medical_coder("P123", "Case...")
```
3. **Implement proper logging:**
```python
from loguru import logger
logger.add("mcs.log", rotation="500 MB")
with MCSClient() as client:
try:
response = client.run_medical_coder("P123", "Case...")
except Exception as e:
logger.exception(f"Error processing case: {str(e)}")
```
4. **Monitor API health:**
```python
def ensure_healthy_api():
with MCSClient() as client:
if not client.health_check():
raise SystemExit("API is not healthy")
```