You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/playground/demos/ai_acceleerated_learning/main.py

249 lines
8.2 KiB

11 months ago
import concurrent
import csv
from swarms import Agent, OpenAIChat
from swarms.memory import ChromaDB
from dotenv import load_dotenv
from swarms.utils.parse_code import extract_code_from_markdown
from swarms.utils.file_processing import create_file
from swarms.utils.loguru_logger import logger
# Load ENV
load_dotenv()
# Gemini
gemini = OpenAIChat()
# memory
memory = ChromaDB(output_dir="swarm_hackathon")
def execute_concurrently(callable_functions: callable, max_workers=5):
"""
Executes callable functions concurrently using multithreading.
Parameters:
- callable_functions: A list of tuples, each containing the callable function and its arguments.
For example: [(function1, (arg1, arg2), {'kwarg1': val1}), (function2, (), {})]
- max_workers: The maximum number of threads to use.
Returns:
- results: A list of results returned by the callable functions. If an error occurs in any function,
the exception object will be placed at the corresponding index in the list.
"""
results = [None] * len(callable_functions)
def worker(fn, args, kwargs, index):
try:
result = fn(*args, **kwargs)
results[index] = result
except Exception as e:
results[index] = e
with concurrent.futures.ThreadPoolExecutor(
max_workers=max_workers
) as executor:
futures = []
for i, (fn, args, kwargs) in enumerate(callable_functions):
9 months ago
futures.append(executor.submit(worker, fn, args, kwargs, i))
11 months ago
# Wait for all threads to complete
concurrent.futures.wait(futures)
return results
# Adjusting the function to extract specific column values
9 months ago
def extract_and_create_agents(csv_file_path: str, target_columns: list):
11 months ago
"""
Reads a CSV file, extracts "Project Name" and "Lightning Proposal" for each row,
creates an Agent for each, and adds it to the swarm network.
Parameters:
- csv_file_path: The path to the CSV file.
- target_columns: A list of column names to extract values from.
"""
try:
agents = []
with open(csv_file_path, mode="r", encoding="utf-8") as file:
reader = csv.DictReader(file)
for row in reader:
project_name = row[target_columns[0]]
lightning_proposal = row[target_columns[1]]
# Example of creating and adding an agent based on the project name and lightning proposal
agent_name = f"{project_name} agent"
print(agent_name) # For demonstration
# Create the agent
logger.info("Creating agent...")
# Design agent
logger.info("Creating design agent...")
design_agent = Agent(
llm=gemini,
agent_name="Design Agent",
max_loops=1,
stopping_token="<DONE?>",
sop=None,
system_prompt=(
"Transform an app idea into step by step very"
" simple algorithmic psuedocode so it can be"
" implemented simply."
),
long_term_memory=memory,
)
# Log the agent
logger.info(
f"Code Agent created: {agent_name} with long term"
" memory"
)
agent = Agent(
llm=gemini,
agent_name=agent_name,
max_loops=1,
code_interpreter=True,
stopping_token="<DONE?>",
sop=None,
system_prompt=(
"Transform an app idea into a very simple"
" python app in markdown. Return all the"
" python code in a single markdown file."
" Return only code and nothing else."
),
long_term_memory=memory,
)
# Testing agent
logger.info(f"Testing_agent agent: {agent_name}")
agent = Agent(
llm=gemini,
agent_name=agent_name + " testing",
max_loops=1,
stopping_token="<DONE?>",
sop=None,
system_prompt=(
"Create unit tests using pytest based on the"
" code you see, only return unit test code in"
" python using markdown, only return the code"
" and nothing else."
),
long_term_memory=memory,
)
# Log the agent
logger.info(
9 months ago
f"Agent created: {agent_name} with long term" " memory"
11 months ago
)
agents.append(agent)
# Design agent
design_agent_output = design_agent.run(
(
"Create the algorithmic psuedocode for the"
f" {lightning_proposal} in markdown and"
" return it"
),
None,
)
logger.info(
"Algorithmic psuedocode created:"
f" {design_agent_output}"
)
# Create the code for each project
output = agent.run(
(
"Create the code for the"
f" {lightning_proposal} in python using the"
" algorithmic psuedocode"
f" {design_agent_output} and wrap it in"
" markdown and return it"
),
None,
)
print(output)
# Parse the output
output = extract_code_from_markdown(output)
# Create the file
output = create_file(output, f"{project_name}.py")
# Testing agent
testing_agent_output = agent.run(
(
"Create the unit tests for the"
f" {lightning_proposal} in python using the"
f" code {output} and wrap it in markdown and"
" return it"
),
None,
)
print(testing_agent_output)
# Parse the output
testing_agent_output = extract_code_from_markdown(
testing_agent_output
)
# Create the file
testing_agent_output = create_file(
testing_agent_output, f"test_{project_name}.py"
)
# Log the project created
logger.info(
f"Project {project_name} created: {output} at"
f" file path {project_name}.py"
)
print(output)
# Log the unit tests created
logger.info(
f"Unit tests for {project_name} created:"
f" {testing_agent_output} at file path"
f" test_{project_name}.py"
)
print(
f"Agent {agent_name} created and added to the"
" swarm network"
)
return agents
except Exception as e:
logger.error(
"An error occurred while extracting and creating"
f" agents: {e}"
)
return None
# CSV
csv_file = "presentation.csv"
# Specific columns to extract
target_columns = ["Project Name", "Project Description"]
# Use the adjusted function
specific_column_values = extract_and_create_agents(
csv_file, target_columns
)
# Display the extracted column values
print(specific_column_values)
# Concurrently execute the function
logger.info(
"Concurrently executing the swarm for each hackathon project..."
)
output = execute_concurrently(
[
(extract_and_create_agents, (csv_file, target_columns), {}),
],
max_workers=5,
)
print(output)