You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/DOCS/agents/MODELS.md

187 lines
3.7 KiB

# Models Documentation
====================
## Language Models
---------------
Language models are the driving force of our agents. They are responsible for generating text based on a given prompt. We currently support two types of language models: Anthropic and HuggingFace.
### Anthropic
The `Anthropic` class is a wrapper for the Anthropic large language models.
#### Initialization
```
Anthropic(model="claude-2", max_tokens_to_sample=256, temperature=None, top_k=None, top_p=None, streaming=False, default_request_timeout=None)
```
##### Parameters
- `model` (str, optional): The name of the model to use. Default is "claude-2".
- `max_tokens_to_sample` (int, optional): The maximum number of tokens to sample. Default is 256.
- `temperature` (float, optional): The temperature to use for the generation. Higher values result in more random outputs.
- `top_k` (int, optional): The number of top tokens to consider for the generation.
- `top_p` (float, optional): The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling.
- `streaming` (bool, optional): Whether to use streaming mode. Default is False.
- `default_request_timeout` (int, optional): The default request timeout in seconds. Default is 600.
##### Example
```
anthropic = Anthropic(model="claude-2", max_tokens_to_sample=100, temperature=0.8)
```
#### Generation
```
anthropic.generate(prompt, stop=None)
```
##### Parameters
- `prompt` (str): The prompt to use for the generation.
- `stop` (list, optional): A list of stop sequences. The generation will stop if one of these sequences is encountered.
##### Returns
- `str`: The generated text.
##### Example
```
prompt = "Once upon a time"
stop = ["The end"]
print(anthropic.generate(prompt, stop))
```
### HuggingFaceLLM
The `HuggingFaceLLM` class is a wrapper for the HuggingFace language models.
#### Initialization
```
HuggingFaceLLM(model_id: str, device: str = None, max_length: int = 20, quantize: bool = False, quantization_config: dict = None)
```
##### Parameters
- `model_id` (str): The ID of the model to use.
- `device` (str, optional): The device to use for the generation. Default is "cuda" if available, otherwise "cpu".
- `max_length` (int, optional): The maximum length of the generated text. Default is 20.
- `quantize` (bool, optional): Whether to quantize the model. Default is False.
- `quantization_config` (dict, optional): The configuration for the quantization.
##### Example
```
huggingface = HuggingFaceLLM(model_id="gpt2", device="cpu", max_length=50)
```
#### Generation
```
huggingface.generate(prompt_text: str, max_length: int = None)
```
##### Parameters
- `prompt_text` (str): The prompt to use for the generation.
- `max_length` (int, optional): The maximum length of the generated text. If not provided, the default value specified during initialization is used.
##### Returns
- `str`: The generated text.
##### Example
```
prompt = "Once upon a time"
print(huggingface.generate(prompt))
```
### Full Examples
```python
# Import the necessary classes
from swarms.models import Anthropic, HuggingFaceLLM
# Create an instance of the Anthropic class
anthropic = Anthropic(model="claude-2", max_tokens_to_sample=100, temperature=0.8)
# Use the Anthropic instance to generate text
prompt = "Once upon a time"
stop = ["The end"]
print("Anthropic output:")
print(anthropic.generate(prompt, stop))
# Create an instance of the HuggingFaceLLM class
huggingface = HuggingFaceLLM(model_id="gpt2", device="cpu", max_length=50)
# Use the HuggingFaceLLM instance to generate text
prompt = "Once upon a time"
print("\nHuggingFaceLLM output:")
print(huggingface.generate(prompt))
```