You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/examples/demos/jamba_swarm/main.py

177 lines
4.9 KiB

6 months ago
# Description: Main file for the Jamba Swarm.
from swarms.utils.loguru_logger import logger
import json
from typing import List
from dotenv import load_dotenv
from swarms import Agent, MixtureOfAgents, OpenAIChat
from jamba_swarm.prompts import BOSS_PLANNER, BOSS_CREATOR
from jamba_swarm.api_schemas import JambaSwarmResponse
from swarms.utils.parse_code import extract_code_from_markdown
load_dotenv()
# Model
model = OpenAIChat()
# Name, system prompt,
def create_and_execute_swarm(
name: List[str], system_prompt: List[str], task: str
):
"""
Creates and executes a swarm of agents for the given task.
Args:
name (List[str]): A list of names for the agents.
system_prompt (List[str]): A list of system prompts for the agents.
task (str): The description of the task for the swarm.
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Returns:
List[Agent]: A list of agents in the swarm.
"""
agents = []
for name, prompt in zip(name, system_prompt):
agent = Agent(
agent_name=name,
system_prompt=prompt,
agent_description="Generates a spec of agents for the problem at hand.",
llm=model,
max_loops=1,
autosave=True,
dynamic_temperature_enabled=True,
dashboard=False,
verbose=True,
streaming_on=True,
# interactive=True, # Set to False to disable interactive mode
saved_state_path=f"{name}_agent.json",
# tools=[calculate_profit, generate_report],
# docs_folder="docs",
# pdf_path="docs/accounting_agent.pdf",
# tools=[browser_automation],
)
agents.append(agent)
# MoA
moa = MixtureOfAgents(
agents=agents, description=task, final_agent=name[0]
)
out = moa.run(
task,
)
print(out)
return out
# Initialize the agent
planning_agent = Agent(
agent_name="Boss Director",
system_prompt=BOSS_PLANNER,
agent_description="Generates a spec of agents for the problem at hand.",
llm=model,
max_loops=1,
autosave=True,
dynamic_temperature_enabled=True,
dashboard=False,
verbose=True,
streaming_on=True,
# interactive=True, # Set to False to disable interactive mode
saved_state_path="accounting_agent.json",
# tools=[calculate_profit, generate_report],
# docs_folder="docs",
# pdf_path="docs/accounting_agent.pdf",
# tools=[browser_automation],
)
# Boss Agent creator
boss_agent_creator = Agent(
agent_name="Boss Agent Creator",
system_prompt=BOSS_CREATOR,
agent_description="Generates a spec of agents for the problem at hand.",
llm=model,
max_loops=1,
autosave=True,
dynamic_temperature_enabled=True,
dashboard=False,
verbose=True,
streaming_on=True,
# interactive=True, # Set to False to disable interactive mode
saved_state_path="boss_director_agent.json",
# tools=[calculate_profit, generate_report],
# docs_folder="docs",
# pdf_path="docs/accounting_agent.pdf",
# tools=[create_and_execute_swarm],
)
def parse_agents(json_data):
if not json_data:
raise ValueError("Input JSON data is None or empty")
parsed_data = json.loads(json_data)
names = []
system_prompts = []
for agent in parsed_data["agents"]:
names.append(agent["agent_name"])
system_prompts.append(agent["system_prompt"])
return names, system_prompts
class JambaSwarm:
def __init__(self, planning_agent, boss_agent_creator):
self.planning_agent = planning_agent
self.boss_agent_creator = boss_agent_creator
def run(self, task: str = None):
# Planning agent
logger.info(f"Making plan for the task: {task}")
out = self.planning_agent.run(task)
# Boss agent
logger.info("Running boss agent creator with memory.")
agents = self.boss_agent_creator.run(out)
# print(f"Agents: {agents}")
agents = extract_code_from_markdown(agents)
logger.info(f"Output from boss agent creator: {agents}")
# Debugging output
logger.debug(f"Output from boss agent creator: {agents}")
# Check if agents is None
if agents is None:
raise ValueError("The boss agent creator returned None")
# Parse the JSON input and output the list of agent names and system prompts
names, system_prompts = parse_agents(agents)
# Call the function with parsed data
4 months ago
response = create_and_execute_swarm(
names, system_prompts, task
)
6 months ago
# Create and execute swarm
log = JambaSwarmResponse(
task=task,
plan=out,
agents=agents,
response=response,
)
return log.json()
swarm = JambaSwarm(planning_agent, boss_agent_creator)
# Run the swarm
swarm.run("Create a swarm of agents for sales")