|
|
|
# Description: Main file for the Jamba Swarm.
|
|
|
|
from swarms.utils.loguru_logger import logger
|
|
|
|
import json
|
|
|
|
from typing import List
|
|
|
|
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
|
|
|
|
from swarms import Agent, MixtureOfAgents, OpenAIChat
|
|
|
|
from jamba_swarm.prompts import BOSS_PLANNER, BOSS_CREATOR
|
|
|
|
from jamba_swarm.api_schemas import JambaSwarmResponse
|
|
|
|
from swarms.utils.parse_code import extract_code_from_markdown
|
|
|
|
|
|
|
|
|
|
|
|
load_dotenv()
|
|
|
|
|
|
|
|
# Model
|
|
|
|
|
|
|
|
model = OpenAIChat()
|
|
|
|
|
|
|
|
|
|
|
|
# Name, system prompt,
|
|
|
|
def create_and_execute_swarm(
|
|
|
|
name: List[str], system_prompt: List[str], task: str
|
|
|
|
):
|
|
|
|
"""
|
|
|
|
Creates and executes a swarm of agents for the given task.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
name (List[str]): A list of names for the agents.
|
|
|
|
system_prompt (List[str]): A list of system prompts for the agents.
|
|
|
|
task (str): The description of the task for the swarm.
|
|
|
|
*args: Variable length argument list.
|
|
|
|
**kwargs: Arbitrary keyword arguments.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
List[Agent]: A list of agents in the swarm.
|
|
|
|
|
|
|
|
"""
|
|
|
|
agents = []
|
|
|
|
for name, prompt in zip(name, system_prompt):
|
|
|
|
agent = Agent(
|
|
|
|
agent_name=name,
|
|
|
|
system_prompt=prompt,
|
|
|
|
agent_description="Generates a spec of agents for the problem at hand.",
|
|
|
|
llm=model,
|
|
|
|
max_loops=1,
|
|
|
|
autosave=True,
|
|
|
|
dynamic_temperature_enabled=True,
|
|
|
|
dashboard=False,
|
|
|
|
verbose=True,
|
|
|
|
streaming_on=True,
|
|
|
|
# interactive=True, # Set to False to disable interactive mode
|
|
|
|
saved_state_path=f"{name}_agent.json",
|
|
|
|
# tools=[calculate_profit, generate_report],
|
|
|
|
# docs_folder="docs",
|
|
|
|
# pdf_path="docs/accounting_agent.pdf",
|
|
|
|
# tools=[browser_automation],
|
|
|
|
)
|
|
|
|
agents.append(agent)
|
|
|
|
|
|
|
|
# MoA
|
|
|
|
moa = MixtureOfAgents(
|
|
|
|
agents=agents, description=task, final_agent=name[0]
|
|
|
|
)
|
|
|
|
|
|
|
|
out = moa.run(
|
|
|
|
task,
|
|
|
|
)
|
|
|
|
print(out)
|
|
|
|
return out
|
|
|
|
|
|
|
|
|
|
|
|
# Initialize the agent
|
|
|
|
planning_agent = Agent(
|
|
|
|
agent_name="Boss Director",
|
|
|
|
system_prompt=BOSS_PLANNER,
|
|
|
|
agent_description="Generates a spec of agents for the problem at hand.",
|
|
|
|
llm=model,
|
|
|
|
max_loops=1,
|
|
|
|
autosave=True,
|
|
|
|
dynamic_temperature_enabled=True,
|
|
|
|
dashboard=False,
|
|
|
|
verbose=True,
|
|
|
|
streaming_on=True,
|
|
|
|
# interactive=True, # Set to False to disable interactive mode
|
|
|
|
saved_state_path="accounting_agent.json",
|
|
|
|
# tools=[calculate_profit, generate_report],
|
|
|
|
# docs_folder="docs",
|
|
|
|
# pdf_path="docs/accounting_agent.pdf",
|
|
|
|
# tools=[browser_automation],
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# Boss Agent creator
|
|
|
|
boss_agent_creator = Agent(
|
|
|
|
agent_name="Boss Agent Creator",
|
|
|
|
system_prompt=BOSS_CREATOR,
|
|
|
|
agent_description="Generates a spec of agents for the problem at hand.",
|
|
|
|
llm=model,
|
|
|
|
max_loops=1,
|
|
|
|
autosave=True,
|
|
|
|
dynamic_temperature_enabled=True,
|
|
|
|
dashboard=False,
|
|
|
|
verbose=True,
|
|
|
|
streaming_on=True,
|
|
|
|
# interactive=True, # Set to False to disable interactive mode
|
|
|
|
saved_state_path="boss_director_agent.json",
|
|
|
|
# tools=[calculate_profit, generate_report],
|
|
|
|
# docs_folder="docs",
|
|
|
|
# pdf_path="docs/accounting_agent.pdf",
|
|
|
|
# tools=[create_and_execute_swarm],
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def parse_agents(json_data):
|
|
|
|
if not json_data:
|
|
|
|
raise ValueError("Input JSON data is None or empty")
|
|
|
|
|
|
|
|
parsed_data = json.loads(json_data)
|
|
|
|
names = []
|
|
|
|
system_prompts = []
|
|
|
|
|
|
|
|
for agent in parsed_data["agents"]:
|
|
|
|
names.append(agent["agent_name"])
|
|
|
|
system_prompts.append(agent["system_prompt"])
|
|
|
|
|
|
|
|
return names, system_prompts
|
|
|
|
|
|
|
|
|
|
|
|
class JambaSwarm:
|
|
|
|
def __init__(self, planning_agent, boss_agent_creator):
|
|
|
|
self.planning_agent = planning_agent
|
|
|
|
self.boss_agent_creator = boss_agent_creator
|
|
|
|
|
|
|
|
def run(self, task: str = None):
|
|
|
|
# Planning agent
|
|
|
|
logger.info(f"Making plan for the task: {task}")
|
|
|
|
out = self.planning_agent.run(task)
|
|
|
|
|
|
|
|
# Boss agent
|
|
|
|
logger.info("Running boss agent creator with memory.")
|
|
|
|
agents = self.boss_agent_creator.run(out)
|
|
|
|
# print(f"Agents: {agents}")
|
|
|
|
agents = extract_code_from_markdown(agents)
|
|
|
|
logger.info(f"Output from boss agent creator: {agents}")
|
|
|
|
|
|
|
|
# Debugging output
|
|
|
|
logger.debug(f"Output from boss agent creator: {agents}")
|
|
|
|
|
|
|
|
# Check if agents is None
|
|
|
|
if agents is None:
|
|
|
|
raise ValueError("The boss agent creator returned None")
|
|
|
|
|
|
|
|
# Parse the JSON input and output the list of agent names and system prompts
|
|
|
|
names, system_prompts = parse_agents(agents)
|
|
|
|
|
|
|
|
# Call the function with parsed data
|
|
|
|
response = create_and_execute_swarm(
|
|
|
|
names, system_prompts, task
|
|
|
|
)
|
|
|
|
|
|
|
|
# Create and execute swarm
|
|
|
|
log = JambaSwarmResponse(
|
|
|
|
task=task,
|
|
|
|
plan=out,
|
|
|
|
agents=agents,
|
|
|
|
response=response,
|
|
|
|
)
|
|
|
|
|
|
|
|
return log.json()
|
|
|
|
|
|
|
|
|
|
|
|
swarm = JambaSwarm(planning_agent, boss_agent_creator)
|
|
|
|
|
|
|
|
# Run the swarm
|
|
|
|
swarm.run("Create a swarm of agents for sales")
|