You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/examples/agents/use_cases/code_gen/code_interpreter_agent.py

94 lines
2.6 KiB

4 months ago
from swarm_models.openai_function_caller import OpenAIFunctionCaller
6 months ago
from pydantic import BaseModel, Field
from swarms.tools.prebuilt.code_executor import CodeExecutor
from swarms.structs.concat import concat_strings
# Pydantic is a data validation library that provides data validation and parsing using Python type hints.
# It is used here to define the data structure for making API calls to retrieve weather information.
class CodeSpec(BaseModel):
summary: str = Field(
...,
description="The summary of the code",
)
algorithmic_pseudocode: str = Field(
...,
description="The pseudocode of the code",
)
code: str = Field(
...,
description="The code for the algorithm.",
)
def clean_model_code(model_code_str: str) -> str:
"""
Cleans up the generated model code string.
Args:
model_code_str (str): The raw model code as a string.
Returns:
str: The cleaned-up model code.
"""
4 months ago
cleaned_code = model_code_str.replace("\\n", "\n").replace(
"\\'", "'"
)
6 months ago
return cleaned_code.strip()
# The WeatherAPI class is a Pydantic BaseModel that represents the data structure
# for making API calls to retrieve weather information. It has two attributes: city and date.
# Example usage:
# Initialize the function caller
model = OpenAIFunctionCaller(
system_prompt="You're the code interpreter agent, your purpose is to generate code given a task and provide a summary, pseudocode, and code for the algorithm.",
max_tokens=3400,
temperature=0.5,
base_model=CodeSpec,
parallel_tool_calls=False,
)
def run_model_and_generate_code(max_loops: int = 2):
question = "What is the task for the code interpreter agent?"
task = input(question)
responses = []
responses.append(question)
responses.append(task)
for i in range(max_loops):
task = concat_strings(task)
out = model.run(task)
summary = out["summary"]
print("\nSummary: ", summary)
pseudocode = out["algorithmic_pseudocode"]
code = clean_model_code(out["code"])
output = f"{summary}\n\n{pseudocode}\n\n{code}"
responses.append(output)
# Code Executor
executor = CodeExecutor()
# Execute the code
result = executor.execute(code)
if "error" in result:
print(f"Error: {result}")
break
print("\nCode Output: ", result)
task = input(
"\nEnter the next task for the code interpreter agent (or 'exit' to stop): "
)
responses.append(task)
return responses
run_model_and_generate_code()