You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/tests/models/test_timm_model.py

91 lines
2.8 KiB

5 months ago
from unittest.mock import Mock, patch
import pytest
import torch
4 months ago
from swarm_models import TimmModel
5 months ago
def test_timm_model_init():
with patch("swarms.models.timm.list_models") as mock_list_models:
model_name = "resnet18"
pretrained = True
in_chans = 3
timm_model = TimmModel(model_name, pretrained, in_chans)
mock_list_models.assert_called_once()
assert timm_model.model_name == model_name
assert timm_model.pretrained == pretrained
assert timm_model.in_chans == in_chans
assert timm_model.models == mock_list_models.return_value
def test_timm_model_call():
4 months ago
with patch(
"swarms.models.timm.create_model"
) as mock_create_model:
5 months ago
model_name = "resnet18"
pretrained = True
in_chans = 3
timm_model = TimmModel(model_name, pretrained, in_chans)
task = torch.rand(1, in_chans, 224, 224)
result = timm_model(task)
mock_create_model.assert_called_once_with(
model_name, pretrained=pretrained, in_chans=in_chans
)
assert result == mock_create_model.return_value(task)
def test_timm_model_list_models():
with patch("swarms.models.timm.list_models") as mock_list_models:
model_name = "resnet18"
pretrained = True
in_chans = 3
timm_model = TimmModel(model_name, pretrained, in_chans)
result = timm_model.list_models()
mock_list_models.assert_called_once()
assert result == mock_list_models.return_value
def test_get_supported_models():
model_handler = TimmModel()
supported_models = model_handler._get_supported_models()
assert isinstance(supported_models, list)
assert len(supported_models) > 0
def test_create_model(sample_model_info):
model_handler = TimmModel()
model = model_handler._create_model(sample_model_info)
assert isinstance(model, torch.nn.Module)
def test_call(sample_model_info):
model_handler = TimmModel()
input_tensor = torch.randn(1, 3, 224, 224)
4 months ago
output_shape = model_handler.__call__(
sample_model_info, input_tensor
)
5 months ago
assert isinstance(output_shape, torch.Size)
def test_get_supported_models_mock():
model_handler = TimmModel()
model_handler._get_supported_models = Mock(
return_value=["resnet18", "resnet50"]
)
supported_models = model_handler._get_supported_models()
assert supported_models == ["resnet18", "resnet50"]
def test_create_model_mock(sample_model_info):
model_handler = TimmModel()
model_handler._create_model = Mock(return_value=torch.nn.Module())
model = model_handler._create_model(sample_model_info)
assert isinstance(model, torch.nn.Module)
def test_coverage_report():
# Install pytest-cov
# Run tests with coverage report
pytest.main(["--cov=my_module", "--cov-report=html"])