|
|
|
import os
|
|
|
|
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
|
|
|
|
from swarms.models import OpenAIChat
|
|
|
|
from swarms.prompts.code_interpreter import CODE_INTERPRETER
|
|
|
|
from swarms.structs import Agent
|
|
|
|
from swarms.prompts.programming import TEST_SOP, DOCUMENTATION_SOP
|
|
|
|
from termcolor import colored
|
|
|
|
|
|
|
|
load_dotenv()
|
|
|
|
|
|
|
|
|
|
|
|
FEATURE = (
|
|
|
|
"Implement an all-new signup system in typescript using supabase"
|
|
|
|
)
|
|
|
|
|
|
|
|
CODEBASE = """
|
|
|
|
import React, { useState } from 'react';
|
|
|
|
import UpperPanel from './UpperPanel';
|
|
|
|
import LowerPanel from './LowerPanel';
|
|
|
|
|
|
|
|
const MainPanel = () => {
|
|
|
|
const [promptInstructionForLowerPanel, setPromptInstructionForLowerPanel] = useState('');
|
|
|
|
const [formData, setFormData] = useState('');
|
|
|
|
const [isLoading, setIsLoading] = useState(false);
|
|
|
|
|
|
|
|
return (
|
|
|
|
<div className="flex h-screen">
|
|
|
|
<UpperPanel setPromptInstructionForLowerPanel={setPromptInstructionForLowerPanel}
|
|
|
|
isLoading={isLoading}
|
|
|
|
setIsLoading={setIsLoading}
|
|
|
|
/>
|
|
|
|
<LowerPanel promptInstruction={promptInstructionForLowerPanel} isLoading={isLoading} />
|
|
|
|
</div>
|
|
|
|
);
|
|
|
|
};
|
|
|
|
|
|
|
|
export default MainPanel;
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
# Load the environment variables
|
|
|
|
api_key = os.getenv("OPENAI_API_KEY")
|
|
|
|
|
|
|
|
# Initialize the language agent
|
|
|
|
llm = OpenAIChat(
|
|
|
|
model_name="gpt-4",
|
|
|
|
openai_api_key=api_key,
|
|
|
|
temperature=0.5,
|
|
|
|
max_tokens=4000,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Product Manager Agent init
|
|
|
|
product_manager_agent = Agent(
|
|
|
|
llm=llm, max_loops=1, sop=CODE_INTERPRETER, autosave=True
|
|
|
|
)
|
|
|
|
|
|
|
|
# Initialize the agent with the language agent
|
|
|
|
feature_implementer_frontend = Agent(
|
|
|
|
llm=llm, max_loops=1, sop=CODE_INTERPRETER, autosave=True
|
|
|
|
)
|
|
|
|
|
|
|
|
# Create another agent for a different task
|
|
|
|
feature_implementer_backend = Agent(
|
|
|
|
llm=llm, max_loops=1, sop=CODE_INTERPRETER, autosave=True
|
|
|
|
)
|
|
|
|
|
|
|
|
# Create another agent for a different task
|
|
|
|
tester_agent = Agent(
|
|
|
|
llm=llm, max_loops=1, sop=TEST_SOP, autosave=True
|
|
|
|
)
|
|
|
|
|
|
|
|
# Create another agent for a different task
|
|
|
|
documenting_agent = Agent(
|
|
|
|
llm=llm, max_loops=1, sop=DOCUMENTATION_SOP, autosave=True
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# Product Agent prompt
|
|
|
|
def feature_codebase_product_agentprompt(
|
|
|
|
feature: str, codebase: str
|
|
|
|
) -> str:
|
|
|
|
prompt = (
|
|
|
|
"Create an algorithmic pseudocode for an all-new feature:"
|
|
|
|
f" {feature} based on this codebase: {codebase}"
|
|
|
|
)
|
|
|
|
return prompt
|
|
|
|
|
|
|
|
|
|
|
|
# Product Manager Agent
|
|
|
|
product_manager_out = product_manager_agent.run(
|
|
|
|
feature_codebase_product_agentprompt(FEATURE, CODEBASE)
|
|
|
|
)
|
|
|
|
print(
|
|
|
|
colored(
|
|
|
|
(
|
|
|
|
"---------------------------- Product Manager Plan:"
|
|
|
|
f" {product_manager_out}"
|
|
|
|
),
|
|
|
|
"cyan",
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
# Feature Implementer Agent
|
|
|
|
agent1_out = feature_implementer_frontend.run(
|
|
|
|
f"Create the backend code for {FEATURE} in markdown based off of"
|
|
|
|
f" this algorithmic pseudocode: {product_manager_out} the logic"
|
|
|
|
f" based on the following codebase: {CODEBASE}"
|
|
|
|
)
|
|
|
|
print(
|
|
|
|
colored(
|
|
|
|
(
|
|
|
|
"--------------------- Feature Implementer Code logic:"
|
|
|
|
f" {agent1_out}"
|
|
|
|
),
|
|
|
|
"cyan",
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
# Tester agent
|
|
|
|
tester_agent_out = tester_agent.run(
|
|
|
|
f"Create tests for the following code: {agent1_out}"
|
|
|
|
)
|
|
|
|
print(
|
|
|
|
colored(
|
|
|
|
(
|
|
|
|
"---------------------------- Tests for the logic:"
|
|
|
|
f" {tester_agent_out}"
|
|
|
|
),
|
|
|
|
"green",
|
|
|
|
)
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# Documentation Agent
|
|
|
|
documenter_agent_out = documenting_agent.run(
|
|
|
|
f"Document the following code: {agent1_out}"
|
|
|
|
)
|
|
|
|
print(
|
|
|
|
colored(
|
|
|
|
(
|
|
|
|
"---------------------------- Documentation for the"
|
|
|
|
f" logic: {documenter_agent_out}"
|
|
|
|
),
|
|
|
|
"yellow",
|
|
|
|
)
|
|
|
|
)
|