You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/tests/utils/test_device.py

102 lines
3.5 KiB

6 months ago
from unittest.mock import MagicMock
import pytest
import torch
from swarms.utils.device_checker_cuda import check_device
def test_cuda_not_available(mocker):
mocker.patch("torch.cuda.is_available", return_value=False)
device = check_device()
assert str(device) == "cpu"
def test_single_gpu_available(mocker):
mocker.patch("torch.cuda.is_available", return_value=True)
mocker.patch("torch.cuda.device_count", return_value=1)
devices = check_device()
assert len(devices) == 1
assert str(devices[0]) == "cuda"
def test_multiple_gpus_available(mocker):
mocker.patch("torch.cuda.is_available", return_value=True)
mocker.patch("torch.cuda.device_count", return_value=2)
devices = check_device()
assert len(devices) == 2
assert str(devices[0]) == "cuda:0"
assert str(devices[1]) == "cuda:1"
def test_device_properties(mocker):
mocker.patch("torch.cuda.is_available", return_value=True)
mocker.patch("torch.cuda.device_count", return_value=1)
mocker.patch("torch.cuda.get_device_capability", return_value=(7, 5))
mocker.patch(
"torch.cuda.get_device_properties",
return_value=MagicMock(total_memory=1000),
)
mocker.patch("torch.cuda.memory_allocated", return_value=200)
mocker.patch("torch.cuda.memory_reserved", return_value=300)
mocker.patch("torch.cuda.get_device_name", return_value="Tesla K80")
devices = check_device()
assert len(devices) == 1
assert str(devices[0]) == "cuda"
def test_memory_threshold(mocker):
mocker.patch("torch.cuda.is_available", return_value=True)
mocker.patch("torch.cuda.device_count", return_value=1)
mocker.patch("torch.cuda.get_device_capability", return_value=(7, 5))
mocker.patch(
"torch.cuda.get_device_properties",
return_value=MagicMock(total_memory=1000),
)
mocker.patch(
"torch.cuda.memory_allocated", return_value=900
) # 90% of total memory
mocker.patch("torch.cuda.memory_reserved", return_value=300)
mocker.patch("torch.cuda.get_device_name", return_value="Tesla K80")
with pytest.warns(
UserWarning,
match=r"Memory usage for device cuda exceeds threshold",
):
devices = check_device(
memory_threshold=0.8
) # Set memory threshold to 80%
assert len(devices) == 1
assert str(devices[0]) == "cuda"
def test_compute_capability_threshold(mocker):
mocker.patch("torch.cuda.is_available", return_value=True)
mocker.patch("torch.cuda.device_count", return_value=1)
mocker.patch(
"torch.cuda.get_device_capability", return_value=(3, 0)
) # Compute capability 3.0
mocker.patch(
"torch.cuda.get_device_properties",
return_value=MagicMock(total_memory=1000),
)
mocker.patch("torch.cuda.memory_allocated", return_value=200)
mocker.patch("torch.cuda.memory_reserved", return_value=300)
mocker.patch("torch.cuda.get_device_name", return_value="Tesla K80")
with pytest.warns(
UserWarning,
match=(r"Compute capability for device cuda is below threshold"),
):
devices = check_device(
capability_threshold=3.5
) # Set compute capability threshold to 3.5
assert len(devices) == 1
assert str(devices[0]) == "cuda"
def test_return_single_device(mocker):
mocker.patch("torch.cuda.is_available", return_value=True)
mocker.patch("torch.cuda.device_count", return_value=2)
device = check_device(return_type="single")
assert isinstance(device, torch.device)
assert str(device) == "cuda:0"