You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/swarm_builder.py

334 lines
11 KiB

1 month ago
import os
from typing import List, Optional
from datetime import datetime
from pydantic import BaseModel, Field
from pydantic.v1 import validator
from loguru import logger
from tenacity import (
retry,
stop_after_attempt,
wait_exponential,
)
from swarm_models import OpenAIFunctionCaller, OpenAIChat
from swarms.structs.agent import Agent
from swarms.structs.swarm_router import SwarmRouter
from swarms.structs.agents_available import showcase_available_agents
BOSS_SYSTEM_PROMPT = """
Manage a swarm of worker agents to efficiently serve the user by deciding whether to create new agents or delegate tasks. Ensure operations are efficient and effective.
### Instructions:
1. **Task Assignment**:
- Analyze available worker agents when a task is presented.
- Delegate tasks to existing agents with clear, direct, and actionable instructions if an appropriate agent is available.
- If no suitable agent exists, create a new agent with a fitting system prompt to handle the task.
2. **Agent Creation**:
- Name agents according to the task they are intended to perform (e.g., "Twitter Marketing Agent").
- Provide each new agent with a concise and clear system prompt that includes its role, objectives, and any tools it can utilize.
3. **Efficiency**:
- Minimize redundancy and maximize task completion speed.
- Avoid unnecessary agent creation if an existing agent can fulfill the task.
4. **Communication**:
- Be explicit in task delegation instructions to avoid ambiguity and ensure effective task execution.
- Require agents to report back on task completion or encountered issues.
5. **Reasoning and Decisions**:
- Offer brief reasoning when selecting or creating agents to maintain transparency.
- Avoid using an agent if unnecessary, with a clear explanation if no agents are suitable for a task.
# Output Format
Present your plan in clear, bullet-point format or short concise paragraphs, outlining task assignment, agent creation, efficiency strategies, and communication protocols.
# Notes
- Preserve transparency by always providing reasoning for task-agent assignments and creation.
- Ensure instructions to agents are unambiguous to minimize error.
"""
class AgentConfig(BaseModel):
"""Configuration for an individual agent in a swarm"""
name: str = Field(
description="The name of the agent", example="Research-Agent"
)
description: str = Field(
description="A description of the agent's purpose and capabilities",
example="Agent responsible for researching and gathering information",
)
system_prompt: str = Field(
description="The system prompt that defines the agent's behavior",
example="You are a research agent. Your role is to gather and analyze information...",
)
@validator("name")
def validate_name(cls, v):
if not v.strip():
raise ValueError("Agent name cannot be empty")
return v.strip()
@validator("system_prompt")
def validate_system_prompt(cls, v):
if not v.strip():
raise ValueError("System prompt cannot be empty")
return v.strip()
class SwarmConfig(BaseModel):
"""Configuration for a swarm of cooperative agents"""
name: str = Field(
description="The name of the swarm",
example="Research-Writing-Swarm",
)
description: str = Field(
description="The description of the swarm's purpose and capabilities",
example="A swarm of agents that work together to research topics and write articles",
)
agents: List[AgentConfig] = Field(
description="The list of agents that make up the swarm",
min_items=1,
)
@validator("agents")
def validate_agents(cls, v):
if not v:
raise ValueError("Swarm must have at least one agent")
return v
class AutoSwarmBuilder:
"""A class that automatically builds and manages swarms of AI agents with enhanced error handling."""
def __init__(
self,
name: Optional[str] = None,
description: Optional[str] = None,
verbose: bool = True,
api_key: Optional[str] = None,
model_name: str = "gpt-4",
):
self.name = name or "DefaultSwarm"
self.description = description or "Generic AI Agent Swarm"
self.verbose = verbose
self.agents_pool = []
self.api_key = api_key or os.getenv("OPENAI_API_KEY")
self.model_name = model_name
if not self.api_key:
raise ValueError(
"OpenAI API key must be provided either through initialization or environment variable"
)
logger.info(
"Initialized AutoSwarmBuilder",
extra={
"swarm_name": self.name,
"description": self.description,
"model": self.model_name,
},
)
# Initialize OpenAI chat model
try:
self.chat_model = OpenAIChat(
openai_api_key=self.api_key,
model_name=self.model_name,
temperature=0.1,
)
except Exception as e:
logger.error(
f"Failed to initialize OpenAI chat model: {str(e)}"
)
raise
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
)
def run(self, task: str, image_url: Optional[str] = None) -> str:
"""Run the swarm on a given task with error handling and retries."""
if not task or not task.strip():
raise ValueError("Task cannot be empty")
logger.info("Starting swarm execution", extra={"task": task})
try:
# Create agents for the task
agents = self._create_agents(task, image_url)
if not agents:
raise ValueError(
"No agents were created for the task"
)
# Execute the task through the swarm router
logger.info(
"Routing task through swarm",
extra={"num_agents": len(agents)},
)
output = self.swarm_router(agents, task, image_url)
logger.info("Swarm execution completed successfully")
return output
except Exception as e:
logger.error(
f"Error during swarm execution: {str(e)}",
exc_info=True,
)
raise
def _create_agents(
self, task: str, image_url: Optional[str] = None
) -> List[Agent]:
"""Create the necessary agents for a task with enhanced error handling."""
logger.info("Creating agents for task", extra={"task": task})
try:
model = OpenAIFunctionCaller(
system_prompt=BOSS_SYSTEM_PROMPT,
api_key=self.api_key,
temperature=0.1,
base_model=SwarmConfig,
)
agents_config = model.run(task)
print(f"{agents_config}")
if isinstance(agents_config, dict):
agents_config = SwarmConfig(**agents_config)
# Update swarm configuration
self.name = agents_config.name
self.description = agents_config.description
# Create agents from configuration
agents = []
for agent_config in agents_config.agents:
if isinstance(agent_config, dict):
agent_config = AgentConfig(**agent_config)
agent = self.build_agent(
agent_name=agent_config.name,
agent_description=agent_config.description,
agent_system_prompt=agent_config.system_prompt,
)
agents.append(agent)
# Add available agents showcase to system prompts
agents_available = showcase_available_agents(
name=self.name,
description=self.description,
agents=agents,
)
for agent in agents:
agent.system_prompt += "\n" + agents_available
logger.info(
"Successfully created agents",
extra={"num_agents": len(agents)},
)
return agents
except Exception as e:
logger.error(
f"Error creating agents: {str(e)}", exc_info=True
)
raise
def build_agent(
self,
agent_name: str,
agent_description: str,
agent_system_prompt: str,
) -> Agent:
"""Build a single agent with enhanced error handling."""
logger.info(
"Building agent", extra={"agent_name": agent_name}
)
try:
agent = Agent(
agent_name=agent_name,
description=agent_description,
system_prompt=agent_system_prompt,
llm=self.chat_model,
autosave=True,
dashboard=False,
verbose=self.verbose,
dynamic_temperature_enabled=True,
saved_state_path=f"states/{agent_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
user_name="swarms_corp",
retry_attempts=3,
context_length=200000,
return_step_meta=False,
output_type="str",
streaming_on=False,
auto_generate_prompt=True,
)
return agent
except Exception as e:
logger.error(
f"Error building agent: {str(e)}", exc_info=True
)
raise
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=4, max=10),
)
def swarm_router(
self,
agents: List[Agent],
task: str,
image_url: Optional[str] = None,
) -> str:
"""Route tasks between agents in the swarm with error handling and retries."""
logger.info(
"Initializing swarm router",
extra={"num_agents": len(agents)},
)
try:
swarm_router_instance = SwarmRouter(
name=self.name,
description=self.description,
agents=agents,
swarm_type="auto",
)
formatted_task = f"{self.name} {self.description} {task}"
result = swarm_router_instance.run(formatted_task)
logger.info("Successfully completed swarm routing")
return result
except Exception as e:
logger.error(
f"Error in swarm router: {str(e)}", exc_info=True
)
raise
swarm = AutoSwarmBuilder(
name="ChipDesign-Swarm",
description="A swarm of specialized AI agents for chip design",
api_key="your-api-key", # Optional if set in environment
model_name="gpt-4", # Optional, defaults to gpt-4
)
result = swarm.run(
"Design a new AI accelerator chip optimized for transformer model inference..."
)