|
|
|
import os
|
|
|
|
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
|
|
|
|
from swarms.models import Anthropic, Gemini, Mixtral, OpenAIChat
|
|
|
|
from swarms import ModelParallelizer
|
|
|
|
|
|
|
|
load_dotenv()
|
|
|
|
|
|
|
|
# API Keys
|
|
|
|
anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
|
|
|
|
openai_api_key = os.getenv("OPENAI_API_KEY")
|
|
|
|
gemini_api_key = os.getenv("GEMINI_API_KEY")
|
|
|
|
|
|
|
|
# Initialize the models
|
|
|
|
llm = OpenAIChat(openai_api_key=openai_api_key)
|
|
|
|
anthropic = Anthropic(anthropic_api_key=anthropic_api_key)
|
|
|
|
mixtral = Mixtral()
|
|
|
|
gemini = Gemini(gemini_api_key=gemini_api_key)
|
|
|
|
|
|
|
|
# Initialize the parallelizer
|
|
|
|
llms = [llm, anthropic, mixtral, gemini]
|
|
|
|
parallelizer = ModelParallelizer(llms)
|
|
|
|
|
|
|
|
# Set the task
|
|
|
|
task = "Generate a 10,000 word blog on health and wellness."
|
|
|
|
|
|
|
|
# Run the task
|
|
|
|
out = parallelizer.run(task)
|
|
|
|
|
|
|
|
# Print the responses 1 by 1
|
|
|
|
for i in range(len(out)):
|
|
|
|
print(f"Response from LLM {i}: {out[i]}")
|