|
|
|
from swarms import Agent, OpenAIChat, SequentialWorkflow, Task
|
|
|
|
|
|
|
|
# Example usage
|
|
|
|
llm = OpenAIChat(
|
|
|
|
temperature=0.5,
|
|
|
|
max_tokens=3000,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Initialize the Agent with the language agent
|
|
|
|
agent1 = Agent(
|
|
|
|
agent_name="John the writer",
|
|
|
|
llm=llm,
|
|
|
|
max_loops=0,
|
|
|
|
dashboard=False,
|
|
|
|
)
|
|
|
|
task1 = Task(
|
|
|
|
agent=agent1,
|
|
|
|
description="Write a 1000 word blog about the future of AI",
|
|
|
|
)
|
|
|
|
|
|
|
|
# Create another Agent for a different task
|
|
|
|
agent2 = Agent("Summarizer", llm=llm, max_loops=1, dashboard=False)
|
|
|
|
task2 = Task(
|
|
|
|
agent=agent2,
|
|
|
|
description="Summarize the generated blog",
|
|
|
|
)
|
|
|
|
|
|
|
|
# Create the workflow
|
|
|
|
workflow = SequentialWorkflow(
|
|
|
|
name="Blog Generation Workflow",
|
|
|
|
description=(
|
|
|
|
"A workflow to generate and summarize a blog about the future"
|
|
|
|
" of AI"
|
|
|
|
),
|
|
|
|
max_loops=1,
|
|
|
|
autosave=True,
|
|
|
|
dashboard=False,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Add tasks to the workflow
|
|
|
|
workflow.add(tasks=[task1, task2])
|
|
|
|
|
|
|
|
# Run the workflow
|
|
|
|
workflow.run()
|
|
|
|
|
|
|
|
# # Output the results
|
|
|
|
# for task in workflow.tasks:
|
|
|
|
# print(f"Task: {task.description}, Result: {task.result}")
|