You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
62 lines
2.1 KiB
62 lines
2.1 KiB
3 months ago
|
from fastapi import FastAPI, HTTPException
|
||
|
from pydantic import BaseModel
|
||
|
from typing import Optional
|
||
|
from reflection_tuner import ReflectionTuner
|
||
|
from token_cache_and_adaptive_factory import TokenCache, AdaptiveAgentFactory
|
||
|
from swarms import Agent
|
||
|
from swarm_models import OpenAIChat
|
||
|
from swarms_memory import ChromaDB
|
||
|
import os
|
||
|
|
||
|
# Initialize FastAPI application
|
||
|
app = FastAPI()
|
||
|
|
||
|
# Define the token cache and model
|
||
|
token_cache = TokenCache(cache_duration_minutes=30)
|
||
|
model = OpenAIChat(api_key=os.getenv("OPENAI_API_KEY"), model_name="gpt-4o-mini", temperature=0.1)
|
||
|
memory = ChromaDB(metric="cosine", output_dir="api_memory")
|
||
|
|
||
|
# Agent creation factory
|
||
|
adaptive_factory = AdaptiveAgentFactory(model, token_cache)
|
||
|
|
||
|
# Input model for API request
|
||
|
class AgentRequest(BaseModel):
|
||
|
agent_name: str
|
||
|
system_prompt: str
|
||
|
task: str
|
||
|
reflection_steps: Optional[int] = 2
|
||
|
|
||
|
# Endpoint for creating and running an agent with Reflection-Tuning
|
||
|
@app.post("/run_agent")
|
||
|
async def run_agent(request: AgentRequest):
|
||
|
# Create or retrieve the agent from cache
|
||
|
agent = adaptive_factory.create_agent(
|
||
|
agent_name=request.agent_name,
|
||
|
system_prompt=request.system_prompt,
|
||
|
task=request.task,
|
||
|
memory=memory
|
||
|
)
|
||
|
|
||
|
# Initialize Reflection-Tuning
|
||
|
reflection_tuner = ReflectionTuner(agent, reflection_steps=request.reflection_steps)
|
||
|
response = reflection_tuner.reflect_and_tune(request.task)
|
||
|
return {"response": response}
|
||
|
|
||
|
# Endpoint for running an existing agent without creating a new one
|
||
|
@app.post("/run_existing_agent")
|
||
|
async def run_existing_agent(agent_name: str, task: str):
|
||
|
# Retrieve agent from cache
|
||
|
agent_token = token_cache.get_token(agent_name)
|
||
|
if not agent_token:
|
||
|
raise HTTPException(status_code=404, detail="Agent not found in cache. Create a new agent instead.")
|
||
|
|
||
|
# Run the agent
|
||
|
response = agent_token.run(task)
|
||
|
return {"response": response}
|
||
|
|
||
|
# Endpoint to clear cache for a specific agent
|
||
|
@app.delete("/clear_cache/{agent_name}")
|
||
|
async def clear_cache(agent_name: str):
|
||
|
token_cache.token_cache.pop(agent_name, None)
|
||
|
return {"detail": f"Cache for agent {agent_name} cleared."}
|