You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/tests/models/test_hf.py

91 lines
2.3 KiB

import pytest
import torch
from unittest.mock import Mock
from swarms.models.huggingface import HuggingFaceLLM
@pytest.fixture
def mock_torch():
return Mock()
@pytest.fixture
def mock_autotokenizer():
return Mock()
@pytest.fixture
def mock_automodelforcausallm():
return Mock()
@pytest.fixture
def mock_bitsandbytesconfig():
return Mock()
@pytest.fixture
def hugging_face_llm(
mock_torch,
mock_autotokenizer,
mock_automodelforcausallm,
mock_bitsandbytesconfig,
):
HuggingFaceLLM.torch = mock_torch
HuggingFaceLLM.AutoTokenizer = mock_autotokenizer
HuggingFaceLLM.AutoModelForCausalLM = mock_automodelforcausallm
HuggingFaceLLM.BitsAndBytesConfig = mock_bitsandbytesconfig
return HuggingFaceLLM(model_id="test")
1 year ago
def test_init(
hugging_face_llm, mock_autotokenizer, mock_automodelforcausallm
):
assert hugging_face_llm.model_id == "test"
mock_autotokenizer.from_pretrained.assert_called_once_with("test")
mock_automodelforcausallm.from_pretrained.assert_called_once_with(
"test", quantization_config=None
)
def test_init_with_quantize(
hugging_face_llm,
mock_autotokenizer,
mock_automodelforcausallm,
mock_bitsandbytesconfig,
):
quantization_config = {
"load_in_4bit": True,
"bnb_4bit_use_double_quant": True,
"bnb_4bit_quant_type": "nf4",
"bnb_4bit_compute_dtype": torch.bfloat16,
}
mock_bitsandbytesconfig.return_value = quantization_config
HuggingFaceLLM(model_id="test", quantize=True)
1 year ago
mock_bitsandbytesconfig.assert_called_once_with(
**quantization_config
)
mock_autotokenizer.from_pretrained.assert_called_once_with("test")
mock_automodelforcausallm.from_pretrained.assert_called_once_with(
"test", quantization_config=quantization_config
)
def test_generate_text(hugging_face_llm):
prompt_text = "test prompt"
expected_output = "test output"
hugging_face_llm.tokenizer.encode.return_value = torch.tensor(
[0]
) # Mock tensor
hugging_face_llm.model.generate.return_value = torch.tensor(
[0]
) # Mock tensor
hugging_face_llm.tokenizer.decode.return_value = expected_output
output = hugging_face_llm.generate_text(prompt_text)
assert output == expected_output