You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
291 lines
9.4 KiB
291 lines
9.4 KiB
4 months ago
|
import os
|
||
|
from datetime import datetime
|
||
|
from typing import List, Optional
|
||
|
|
||
|
from dotenv import load_dotenv
|
||
|
from loguru import logger
|
||
|
from pydantic import BaseModel, Field
|
||
|
from swarm_models import OpenAIChat
|
||
|
|
||
|
from swarms import Agent
|
||
|
from swarms.prompts.finance_agent_sys_prompt import (
|
||
|
FINANCIAL_AGENT_SYS_PROMPT,
|
||
|
)
|
||
|
|
||
|
load_dotenv()
|
||
|
|
||
|
# Get the OpenAI API key from the environment variable
|
||
|
api_key = os.getenv("OPENAI_API_KEY")
|
||
|
|
||
|
# Create an instance of the OpenAIChat class
|
||
|
model = OpenAIChat(
|
||
|
openai_api_key=api_key,
|
||
|
model_name="gpt-4o-mini",
|
||
|
temperature=0.1,
|
||
|
max_tokens=2000,
|
||
|
)
|
||
|
|
||
|
# Initialize the agent
|
||
|
agent = Agent(
|
||
|
agent_name="Financial-Analysis-Agent",
|
||
|
system_prompt=FINANCIAL_AGENT_SYS_PROMPT,
|
||
|
llm=model,
|
||
|
max_loops=1,
|
||
|
autosave=True,
|
||
|
dashboard=False,
|
||
|
verbose=True,
|
||
|
dynamic_temperature_enabled=True,
|
||
|
saved_state_path="finance_agent.json",
|
||
|
user_name="swarms_corp",
|
||
|
retry_attempts=1,
|
||
|
context_length=200000,
|
||
|
return_step_meta=False,
|
||
|
# output_type="json",
|
||
|
output_type=str,
|
||
|
)
|
||
|
|
||
|
|
||
|
class ThoughtLog(BaseModel):
|
||
|
"""
|
||
|
Pydantic model to log each thought generated by the agent.
|
||
|
"""
|
||
|
|
||
|
thought: str
|
||
|
timestamp: datetime = Field(default_factory=datetime.now)
|
||
|
recursion_depth: int
|
||
|
|
||
|
|
||
|
class MemoryLog(BaseModel):
|
||
|
"""
|
||
|
Pydantic model to log memory states during the agent's execution.
|
||
|
"""
|
||
|
|
||
|
thoughts: List[ThoughtLog] = []
|
||
|
final_result: Optional[str] = None
|
||
|
completion_status: bool = False
|
||
|
task: str
|
||
|
|
||
|
|
||
|
class RecursiveAgent(Agent):
|
||
|
"""
|
||
|
An autonomous agent built on top of the Swarms Agent framework.
|
||
|
Capable of recursively exploring tasks using a Tree of Thoughts mechanism.
|
||
|
|
||
|
Attributes:
|
||
|
- agent_name (str): The name of the agent.
|
||
|
- system_prompt (str): The system prompt guiding the agent's behavior.
|
||
|
- max_loops (int): The maximum depth for recursion in the Tree of Thoughts.
|
||
|
- memory_limit (int): The maximum number of thought logs to store.
|
||
|
- memory (MemoryLog): Pydantic model to store thoughts and logs.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
agent_name: str,
|
||
|
system_prompt: str,
|
||
|
max_loops: int,
|
||
|
memory_limit: int = 5,
|
||
|
agent: Agent = agent,
|
||
|
*args,
|
||
|
**kwargs,
|
||
|
) -> None:
|
||
|
"""
|
||
|
Initialize the RecursiveAgent.
|
||
|
|
||
|
:param agent_name: Name of the agent.
|
||
|
:param system_prompt: The prompt guiding the agent's behavior.
|
||
|
:param max_loops: The maximum number of recursive loops allowed.
|
||
|
:param memory_limit: Maximum number of memory entries.
|
||
|
:param kwargs: Additional arguments passed to the base Agent.
|
||
|
"""
|
||
|
super().__init__(agent_name=agent_name, **kwargs)
|
||
|
self.system_prompt = system_prompt
|
||
|
self.max_loops = max_loops
|
||
|
self.memory = MemoryLog(task="")
|
||
|
self.memory_limit = memory_limit # Max thoughts to store
|
||
|
self.finished = False # Task completion flag
|
||
|
self.agent = agent(
|
||
|
agent_name=agent_name,
|
||
|
system_prompt=system_prompt,
|
||
|
max_loops=max_loops,
|
||
|
)
|
||
|
logger.info(
|
||
|
f"Initialized agent {self.agent_name} with recursion limit of {self.max_loops}"
|
||
|
)
|
||
|
|
||
|
def add_to_memory(
|
||
|
self, thought: str, recursion_depth: int
|
||
|
) -> None:
|
||
|
"""
|
||
|
Add a thought to the agent's memory using the Pydantic ThoughtLog model.
|
||
|
|
||
|
:param thought: The thought generated by the agent.
|
||
|
:param recursion_depth: The depth of the current recursion.
|
||
|
"""
|
||
|
if len(self.memory.thoughts) >= self.memory_limit:
|
||
|
logger.debug(
|
||
|
"Memory limit reached, discarding the oldest memory entry."
|
||
|
)
|
||
|
self.memory.thoughts.pop(0) # Maintain memory size
|
||
|
thought_log = ThoughtLog(
|
||
|
thought=thought, recursion_depth=recursion_depth
|
||
|
)
|
||
|
self.memory.thoughts.append(thought_log)
|
||
|
logger.info(
|
||
|
f"Added thought to memory at depth {recursion_depth}: {thought}"
|
||
|
)
|
||
|
|
||
|
def check_if_finished(self, current_thought: str) -> bool:
|
||
|
"""
|
||
|
Check if the task is finished by evaluating the current thought.
|
||
|
|
||
|
:param current_thought: The current thought or reasoning result.
|
||
|
:return: True if task completion keywords are found, else False.
|
||
|
"""
|
||
|
# Define criteria for task completion based on keywords
|
||
|
completion_criteria = [
|
||
|
"criteria met",
|
||
|
"task completed",
|
||
|
"done",
|
||
|
"fully solved",
|
||
|
]
|
||
|
if any(
|
||
|
keyword in current_thought.lower()
|
||
|
for keyword in completion_criteria
|
||
|
):
|
||
|
self.finished = True
|
||
|
self.memory.completion_status = True
|
||
|
logger.info(
|
||
|
f"Task completed with thought: {current_thought}"
|
||
|
)
|
||
|
return self.finished
|
||
|
|
||
|
def run_tree_of_thoughts(
|
||
|
self, task: str, current_depth: int = 0
|
||
|
) -> Optional[str]:
|
||
|
"""
|
||
|
Recursively explore thought branches based on the Tree of Thoughts mechanism.
|
||
|
|
||
|
:param task: The task or query to be reasoned upon.
|
||
|
:param current_depth: The current recursion depth.
|
||
|
:return: The final solution or message indicating task completion or failure.
|
||
|
"""
|
||
|
logger.debug(f"Current recursion depth: {current_depth}")
|
||
|
if current_depth >= self.max_loops:
|
||
|
logger.warning(
|
||
|
"Max recursion depth reached, task incomplete."
|
||
|
)
|
||
|
return "Max recursion depth reached, task incomplete."
|
||
|
|
||
|
# Generate multiple possible thoughts/branches using Swarms logic
|
||
|
response = self.generate_thoughts(task)
|
||
|
thoughts = self.extract_thoughts(response)
|
||
|
self.memory.task = task # Log the task in memory
|
||
|
|
||
|
# Store thoughts in memory
|
||
|
for idx, thought in enumerate(thoughts):
|
||
|
logger.info(
|
||
|
f"Exploring thought {idx + 1}/{len(thoughts)}: {thought}"
|
||
|
)
|
||
|
self.add_to_memory(thought, current_depth)
|
||
|
|
||
|
if self.check_if_finished(thought):
|
||
|
self.memory.final_result = (
|
||
|
thought # Log the final result
|
||
|
)
|
||
|
return f"Task completed with thought: {thought}"
|
||
|
|
||
|
# Recursive exploration
|
||
|
result = self.run_tree_of_thoughts(
|
||
|
thought, current_depth + 1
|
||
|
)
|
||
|
|
||
|
if self.finished:
|
||
|
return result
|
||
|
|
||
|
return "Exploration done but no valid solution found."
|
||
|
|
||
|
def generate_thoughts(self, task: str) -> str:
|
||
|
"""
|
||
|
Generate thoughts for the task using the Swarms framework.
|
||
|
|
||
|
:param task: The task or query to generate thoughts for.
|
||
|
:return: A string representing multiple thought branches generated by Swarms logic.
|
||
|
"""
|
||
|
logger.debug(f"Generating thoughts for task: {task}")
|
||
|
response = self.agent.run(
|
||
|
task
|
||
|
) # Assuming Swarms uses an LLM for thought generation
|
||
|
return response
|
||
|
|
||
|
def extract_thoughts(self, response: str) -> List[str]:
|
||
|
"""
|
||
|
Extract individual thoughts/branches from the LLM's response.
|
||
|
|
||
|
:param response: The response string containing multiple thoughts.
|
||
|
:return: A list of extracted thoughts.
|
||
|
"""
|
||
|
logger.debug(f"Extracting thoughts from response: {response}")
|
||
|
return [
|
||
|
thought.strip()
|
||
|
for thought in response.split("\n")
|
||
|
if thought
|
||
|
]
|
||
|
|
||
|
def reflect(self) -> str:
|
||
|
"""
|
||
|
Reflect on the task and thoughts stored in memory, providing a summary of the process.
|
||
|
The reflection will be generated by the LLM based on the stored thoughts.
|
||
|
|
||
|
:return: Reflection output generated by the LLM.
|
||
|
"""
|
||
|
logger.debug("Running reflection on the task.")
|
||
|
|
||
|
# Compile all thoughts into a prompt for reflection
|
||
|
thoughts_for_reflection = "\n".join(
|
||
|
[
|
||
|
f"Thought {i + 1}: {log.thought}"
|
||
|
for i, log in enumerate(self.memory.thoughts)
|
||
|
]
|
||
|
)
|
||
|
reflection_prompt = (
|
||
|
f"Reflect on the following task and thoughts:\n"
|
||
|
f"Task: {self.memory.task}\n"
|
||
|
f"Thoughts:\n{thoughts_for_reflection}\n"
|
||
|
"What did we learn from this? How could this process be improved?"
|
||
|
)
|
||
|
|
||
|
# Use the agent's LLM to generate a reflection based on the memory
|
||
|
reflection_response = self.agent.run(reflection_prompt)
|
||
|
self.memory.final_result = reflection_response
|
||
|
|
||
|
logger.info(f"Reflection generated: {reflection_response}")
|
||
|
return reflection_response
|
||
|
|
||
|
|
||
|
# # Example usage of the RecursiveAgent
|
||
|
|
||
|
# if __name__ == "__main__":
|
||
|
# # Example initialization and running
|
||
|
# agent_name = "Autonomous-Financial-Agent"
|
||
|
# system_prompt = "You are a highly intelligent agent designed to handle financial queries efficiently."
|
||
|
# max_loops = 1
|
||
|
|
||
|
# # Initialize the agent using Swarms
|
||
|
# agent = RecursiveAgent(
|
||
|
# agent_name=agent_name,
|
||
|
# system_prompt=system_prompt,
|
||
|
# max_loops=max_loops
|
||
|
# )
|
||
|
|
||
|
# # Define the task for the agent
|
||
|
# task = "How can I establish a ROTH IRA to buy stocks and get a tax break? What are the criteria?"
|
||
|
|
||
|
# # Run the tree of thoughts mechanism
|
||
|
# result = agent.run_tree_of_thoughts(task)
|
||
|
# logger.info(f"Final result: {result}")
|
||
|
|
||
|
# # Perform reflection
|
||
|
# reflection = agent.reflect()
|
||
|
# logger.info(f"Reflection: {reflection}")
|