You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/new_features_examples/solana_agent.py

355 lines
12 KiB

1 month ago
from dataclasses import dataclass
from typing import List, Optional, Dict, Any
from datetime import datetime
import asyncio
from loguru import logger
import json
import base58
from decimal import Decimal
# Swarms imports
from swarms import Agent
# Solana imports
from solders.rpc.responses import GetTransactionResp
from solders.transaction import Transaction
from anchorpy import Provider, Wallet
from solders.keypair import Keypair
import aiohttp
# Specialized Solana Analysis System Prompt
SOLANA_ANALYSIS_PROMPT = """You are a specialized Solana blockchain analyst agent. Your role is to:
1. Analyze real-time Solana transactions for patterns and anomalies
2. Identify potential market-moving transactions and whale movements
3. Detect important DeFi interactions across major protocols
4. Monitor program interactions for suspicious or notable activity
5. Track token movements across significant protocols like:
- Serum DEX
- Raydium
- Orca
- Marinade
- Jupiter
- Other major Solana protocols
When analyzing transactions, consider:
- Transaction size relative to protocol norms
- Historical patterns for involved addresses
- Impact on protocol liquidity
- Relationship to known market events
- Potential wash trading or suspicious patterns
- MEV opportunities and arbitrage patterns
- Program interaction sequences
Provide analysis in the following format:
{
"analysis_type": "[whale_movement|program_interaction|defi_trade|suspicious_activity]",
"severity": "[high|medium|low]",
"details": {
"transaction_context": "...",
"market_impact": "...",
"recommended_actions": "...",
"related_patterns": "..."
}
}
Focus on actionable insights that could affect:
1. Market movements
2. Protocol stability
3. Trading opportunities
4. Risk management
"""
@dataclass
class TransactionData:
"""Data structure for parsed Solana transaction information"""
signature: str
block_time: datetime
slot: int
fee: int
lamports: int
from_address: str
to_address: str
program_id: str
instruction_data: Optional[str] = None
program_logs: List[str] = None
@property
def sol_amount(self) -> Decimal:
"""Convert lamports to SOL"""
return Decimal(self.lamports) / Decimal(1e9)
def to_dict(self) -> Dict[str, Any]:
"""Convert transaction data to dictionary for agent analysis"""
return {
"signature": self.signature,
"timestamp": self.block_time.isoformat(),
"slot": self.slot,
"fee": self.fee,
"amount_sol": str(self.sol_amount),
"from_address": self.from_address,
"to_address": self.to_address,
"program_id": self.program_id,
"instruction_data": self.instruction_data,
"program_logs": self.program_logs,
}
class SolanaSwarmAgent:
"""Intelligent agent for analyzing Solana transactions using swarms"""
def __init__(
self,
agent_name: str = "Solana-Analysis-Agent",
model_name: str = "gpt-4",
):
self.agent = Agent(
agent_name=agent_name,
system_prompt=SOLANA_ANALYSIS_PROMPT,
model_name=model_name,
max_loops=1,
autosave=True,
dashboard=False,
verbose=True,
dynamic_temperature_enabled=True,
saved_state_path="solana_agent.json",
user_name="solana_analyzer",
retry_attempts=3,
context_length=4000,
)
# Initialize known patterns database
self.known_patterns = {
"whale_addresses": set(),
"program_interactions": {},
"recent_transactions": [],
}
logger.info(
f"Initialized {agent_name} with specialized Solana analysis capabilities"
)
async def analyze_transaction(
self, tx_data: TransactionData
) -> Dict[str, Any]:
"""Analyze a transaction using the specialized agent"""
try:
# Update recent transactions for pattern analysis
self.known_patterns["recent_transactions"].append(
tx_data.signature
)
if len(self.known_patterns["recent_transactions"]) > 1000:
self.known_patterns["recent_transactions"].pop(0)
# Prepare context for agent
context = {
"transaction": tx_data.to_dict(),
"known_patterns": {
"recent_similar_transactions": [
tx
for tx in self.known_patterns[
"recent_transactions"
][-5:]
if abs(
TransactionData(tx).sol_amount
- tx_data.sol_amount
)
< 1
],
"program_statistics": self.known_patterns[
"program_interactions"
].get(tx_data.program_id, {}),
},
}
# Get analysis from agent
analysis = await self.agent.run_async(
f"Analyze the following Solana transaction and provide insights: {json.dumps(context, indent=2)}"
)
# Update pattern database
if tx_data.sol_amount > 1000: # Track whale addresses
self.known_patterns["whale_addresses"].add(
tx_data.from_address
)
# Update program interaction statistics
if (
tx_data.program_id
not in self.known_patterns["program_interactions"]
):
self.known_patterns["program_interactions"][
tx_data.program_id
] = {"total_interactions": 0, "total_volume": 0}
self.known_patterns["program_interactions"][
tx_data.program_id
]["total_interactions"] += 1
self.known_patterns["program_interactions"][
tx_data.program_id
]["total_volume"] += float(tx_data.sol_amount)
return json.loads(analysis)
except Exception as e:
logger.error(f"Error in agent analysis: {str(e)}")
return {
"analysis_type": "error",
"severity": "low",
"details": {
"error": str(e),
"transaction": tx_data.signature,
},
}
class SolanaTransactionMonitor:
"""Main class for monitoring and analyzing Solana transactions"""
def __init__(
self,
rpc_url: str,
swarm_agent: SolanaSwarmAgent,
min_sol_threshold: Decimal = Decimal("100"),
):
self.rpc_url = rpc_url
self.swarm_agent = swarm_agent
self.min_sol_threshold = min_sol_threshold
self.wallet = Wallet(Keypair())
self.provider = Provider(rpc_url, self.wallet)
logger.info("Initialized Solana transaction monitor")
async def parse_transaction(
self, tx_resp: GetTransactionResp
) -> Optional[TransactionData]:
"""Parse transaction response into TransactionData object"""
try:
if not tx_resp.value:
return None
tx_value = tx_resp.value
meta = tx_value.transaction.meta
if not meta:
return None
tx: Transaction = tx_value.transaction.transaction
# Extract transaction details
from_pubkey = str(tx.message.account_keys[0])
to_pubkey = str(tx.message.account_keys[1])
program_id = str(tx.message.account_keys[-1])
# Calculate amount from balance changes
amount = abs(meta.post_balances[0] - meta.pre_balances[0])
return TransactionData(
signature=str(tx_value.transaction.signatures[0]),
block_time=datetime.fromtimestamp(
tx_value.block_time or 0
),
slot=tx_value.slot,
fee=meta.fee,
lamports=amount,
from_address=from_pubkey,
to_address=to_pubkey,
program_id=program_id,
program_logs=(
meta.log_messages if meta.log_messages else []
),
)
except Exception as e:
logger.error(f"Failed to parse transaction: {str(e)}")
return None
async def start_monitoring(self):
"""Start monitoring for new transactions"""
logger.info(
"Starting transaction monitoring with swarm agent analysis"
)
async with aiohttp.ClientSession() as session:
async with session.ws_connect(self.rpc_url) as ws:
await ws.send_json(
{
"jsonrpc": "2.0",
"id": 1,
"method": "transactionSubscribe",
"params": [
{"commitment": "finalized"},
{
"encoding": "jsonParsed",
"commitment": "finalized",
},
],
}
)
async for msg in ws:
if msg.type == aiohttp.WSMsgType.TEXT:
try:
data = json.loads(msg.data)
if "params" in data:
signature = data["params"]["result"][
"value"
]["signature"]
# Fetch full transaction data
tx_response = await self.provider.connection.get_transaction(
base58.b58decode(signature)
)
if tx_response:
tx_data = (
await self.parse_transaction(
tx_response
)
)
if (
tx_data
and tx_data.sol_amount
>= self.min_sol_threshold
):
# Get agent analysis
analysis = await self.swarm_agent.analyze_transaction(
tx_data
)
logger.info(
f"Transaction Analysis:\n"
f"Signature: {tx_data.signature}\n"
f"Amount: {tx_data.sol_amount} SOL\n"
f"Analysis: {json.dumps(analysis, indent=2)}"
)
except Exception as e:
logger.error(
f"Error processing message: {str(e)}"
)
continue
async def main():
"""Example usage"""
# Start monitoring
try:
# Initialize swarm agent
swarm_agent = SolanaSwarmAgent(
agent_name="Solana-Whale-Detector", model_name="gpt-4"
)
# Initialize monitor
monitor = SolanaTransactionMonitor(
rpc_url="wss://api.mainnet-beta.solana.com",
swarm_agent=swarm_agent,
min_sol_threshold=Decimal("100"),
)
await monitor.start_monitoring()
except KeyboardInterrupt:
logger.info("Shutting down gracefully...")
if __name__ == "__main__":
asyncio.run(main())