You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
353 lines
12 KiB
353 lines
12 KiB
1 month ago
|
from typing import List, Dict, Any, Optional, Callable
|
||
|
from dataclasses import dataclass
|
||
|
import json
|
||
|
from datetime import datetime
|
||
|
import inspect
|
||
|
import typing
|
||
|
from typing import Union
|
||
|
from swarms import Agent
|
||
|
from swarm_models import OpenAIChat
|
||
|
from dotenv import load_dotenv
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class ToolDefinition:
|
||
|
name: str
|
||
|
description: str
|
||
|
parameters: Dict[str, Any]
|
||
|
required_params: List[str]
|
||
|
callable: Optional[Callable] = None
|
||
|
|
||
|
|
||
|
@dataclass
|
||
|
class ExecutionStep:
|
||
|
step_id: str
|
||
|
tool_name: str
|
||
|
parameters: Dict[str, Any]
|
||
|
purpose: str
|
||
|
depends_on: List[str]
|
||
|
completed: bool = False
|
||
|
result: Optional[Any] = None
|
||
|
|
||
|
|
||
|
def extract_type_hints(func: Callable) -> Dict[str, Any]:
|
||
|
"""Extract parameter types from function type hints."""
|
||
|
return typing.get_type_hints(func)
|
||
|
|
||
|
|
||
|
def extract_tool_info(func: Callable) -> ToolDefinition:
|
||
|
"""Extract tool information from a callable function."""
|
||
|
# Get function name
|
||
|
name = func.__name__
|
||
|
|
||
|
# Get docstring
|
||
|
description = inspect.getdoc(func) or "No description available"
|
||
|
|
||
|
# Get parameters and their types
|
||
|
signature = inspect.signature(func)
|
||
|
type_hints = extract_type_hints(func)
|
||
|
|
||
|
parameters = {}
|
||
|
required_params = []
|
||
|
|
||
|
for param_name, param in signature.parameters.items():
|
||
|
# Skip self parameter for methods
|
||
|
if param_name == "self":
|
||
|
continue
|
||
|
|
||
|
param_type = type_hints.get(param_name, Any)
|
||
|
|
||
|
# Handle optional parameters
|
||
|
is_optional = (
|
||
|
param.default != inspect.Parameter.empty
|
||
|
or getattr(param_type, "__origin__", None) is Union
|
||
|
and type(None) in param_type.__args__
|
||
|
)
|
||
|
|
||
|
if not is_optional:
|
||
|
required_params.append(param_name)
|
||
|
|
||
|
parameters[param_name] = {
|
||
|
"type": str(param_type),
|
||
|
"default": (
|
||
|
None
|
||
|
if param.default is inspect.Parameter.empty
|
||
|
else param.default
|
||
|
),
|
||
|
"required": not is_optional,
|
||
|
}
|
||
|
|
||
|
return ToolDefinition(
|
||
|
name=name,
|
||
|
description=description,
|
||
|
parameters=parameters,
|
||
|
required_params=required_params,
|
||
|
callable=func,
|
||
|
)
|
||
|
|
||
|
|
||
|
class ToolUsingAgent:
|
||
|
def __init__(
|
||
|
self,
|
||
|
tools: List[Callable],
|
||
|
openai_api_key: str,
|
||
|
model_name: str = "gpt-4",
|
||
|
temperature: float = 0.1,
|
||
|
max_loops: int = 10,
|
||
|
):
|
||
|
# Convert callable tools to ToolDefinitions
|
||
|
self.available_tools = {
|
||
|
tool.__name__: extract_tool_info(tool) for tool in tools
|
||
|
}
|
||
|
|
||
|
self.execution_plan: List[ExecutionStep] = []
|
||
|
self.current_step_index = 0
|
||
|
self.max_loops = max_loops
|
||
|
|
||
|
# Initialize the OpenAI model
|
||
|
self.model = OpenAIChat(
|
||
|
openai_api_key=openai_api_key,
|
||
|
model_name=model_name,
|
||
|
temperature=temperature,
|
||
|
)
|
||
|
|
||
|
# Create system prompt with tool descriptions
|
||
|
self.system_prompt = self._create_system_prompt()
|
||
|
|
||
|
self.agent = Agent(
|
||
|
agent_name="Tool-Using-Agent",
|
||
|
system_prompt=self.system_prompt,
|
||
|
llm=self.model,
|
||
|
max_loops=1,
|
||
|
autosave=True,
|
||
|
verbose=True,
|
||
|
saved_state_path="tool_agent_state.json",
|
||
|
context_length=200000,
|
||
|
)
|
||
|
|
||
|
def _create_system_prompt(self) -> str:
|
||
|
"""Create system prompt with available tools information."""
|
||
|
tools_description = []
|
||
|
for tool_name, tool in self.available_tools.items():
|
||
|
tools_description.append(
|
||
|
f"""
|
||
|
Tool: {tool_name}
|
||
|
Description: {tool.description}
|
||
|
Parameters: {json.dumps(tool.parameters, indent=2)}
|
||
|
Required Parameters: {tool.required_params}
|
||
|
"""
|
||
|
)
|
||
|
|
||
|
output = f"""You are an autonomous agent capable of executing complex tasks using available tools.
|
||
|
|
||
|
Available Tools:
|
||
|
{chr(10).join(tools_description)}
|
||
|
|
||
|
Follow these protocols:
|
||
|
1. Create a detailed plan using available tools
|
||
|
2. Execute each step in order
|
||
|
3. Handle errors appropriately
|
||
|
4. Maintain execution state
|
||
|
5. Return results in structured format
|
||
|
|
||
|
You must ALWAYS respond in the following JSON format:
|
||
|
{{
|
||
|
"plan": {{
|
||
|
"description": "Brief description of the overall plan",
|
||
|
"steps": [
|
||
|
{{
|
||
|
"step_number": 1,
|
||
|
"tool_name": "name_of_tool",
|
||
|
"description": "What this step accomplishes",
|
||
|
"parameters": {{
|
||
|
"param1": "value1",
|
||
|
"param2": "value2"
|
||
|
}},
|
||
|
"expected_output": "Description of expected output"
|
||
|
}}
|
||
|
]
|
||
|
}},
|
||
|
"reasoning": "Explanation of why this plan was chosen"
|
||
|
}}
|
||
|
|
||
|
Before executing any tool:
|
||
|
1. Validate all required parameters are present
|
||
|
2. Verify parameter types match specifications
|
||
|
3. Check parameter values are within valid ranges/formats
|
||
|
4. Ensure logical dependencies between steps are met
|
||
|
|
||
|
If any validation fails:
|
||
|
1. Return error in JSON format with specific details
|
||
|
2. Suggest corrections if possible
|
||
|
3. Do not proceed with execution
|
||
|
|
||
|
After each step execution:
|
||
|
1. Verify output matches expected format
|
||
|
2. Log results and any warnings/errors
|
||
|
3. Update execution state
|
||
|
4. Determine if plan adjustment needed
|
||
|
|
||
|
Error Handling:
|
||
|
1. Catch and classify all errors
|
||
|
2. Provide detailed error messages
|
||
|
3. Suggest recovery steps
|
||
|
4. Maintain system stability
|
||
|
|
||
|
The final output must be valid JSON that can be parsed. Always check your response can be parsed as JSON before returning.
|
||
|
"""
|
||
|
return output
|
||
|
|
||
|
def execute_tool(
|
||
|
self, tool_name: str, parameters: Dict[str, Any]
|
||
|
) -> Any:
|
||
|
"""Execute a tool with given parameters."""
|
||
|
tool = self.available_tools[tool_name]
|
||
|
if not tool.callable:
|
||
|
raise ValueError(
|
||
|
f"Tool {tool_name} has no associated callable"
|
||
|
)
|
||
|
|
||
|
# Convert parameters to appropriate types
|
||
|
converted_params = {}
|
||
|
for param_name, param_value in parameters.items():
|
||
|
param_info = tool.parameters[param_name]
|
||
|
param_type = eval(
|
||
|
param_info["type"]
|
||
|
) # Note: Be careful with eval
|
||
|
converted_params[param_name] = param_type(param_value)
|
||
|
|
||
|
return tool.callable(**converted_params)
|
||
|
|
||
|
def run(self, task: str) -> Dict[str, Any]:
|
||
|
"""Execute the complete task with proper logging and error handling."""
|
||
|
execution_log = {
|
||
|
"task": task,
|
||
|
"start_time": datetime.utcnow().isoformat(),
|
||
|
"steps": [],
|
||
|
"final_result": None
|
||
|
}
|
||
|
|
||
|
try:
|
||
|
# Create and execute plan
|
||
|
plan_response = self.agent.run(f"Create a plan for: {task}")
|
||
|
plan_data = json.loads(plan_response)
|
||
|
|
||
|
# Extract steps from the correct path in JSON
|
||
|
steps = plan_data["plan"]["steps"] # Changed from plan_data["steps"]
|
||
|
|
||
|
for step in steps:
|
||
|
try:
|
||
|
# Check if parameters need default values
|
||
|
for param_name, param_value in step["parameters"].items():
|
||
|
if isinstance(param_value, str) and not param_value.replace(".", "").isdigit():
|
||
|
# If parameter is a description rather than a value, set default
|
||
|
if "income" in param_name.lower():
|
||
|
step["parameters"][param_name] = 75000.0
|
||
|
elif "year" in param_name.lower():
|
||
|
step["parameters"][param_name] = 2024
|
||
|
elif "investment" in param_name.lower():
|
||
|
step["parameters"][param_name] = 1000.0
|
||
|
|
||
|
# Execute the tool
|
||
|
result = self.execute_tool(
|
||
|
step["tool_name"],
|
||
|
step["parameters"]
|
||
|
)
|
||
|
|
||
|
execution_log["steps"].append({
|
||
|
"step_number": step["step_number"],
|
||
|
"tool": step["tool_name"],
|
||
|
"parameters": step["parameters"],
|
||
|
"success": True,
|
||
|
"result": result,
|
||
|
"description": step["description"]
|
||
|
})
|
||
|
|
||
|
except Exception as e:
|
||
|
execution_log["steps"].append({
|
||
|
"step_number": step["step_number"],
|
||
|
"tool": step["tool_name"],
|
||
|
"parameters": step["parameters"],
|
||
|
"success": False,
|
||
|
"error": str(e),
|
||
|
"description": step["description"]
|
||
|
})
|
||
|
print(f"Error executing step {step['step_number']}: {str(e)}")
|
||
|
# Continue with next step instead of raising
|
||
|
continue
|
||
|
|
||
|
# Only mark as success if at least some steps succeeded
|
||
|
successful_steps = [s for s in execution_log["steps"] if s["success"]]
|
||
|
if successful_steps:
|
||
|
execution_log["final_result"] = {
|
||
|
"success": True,
|
||
|
"results": successful_steps,
|
||
|
"reasoning": plan_data.get("reasoning", "No reasoning provided")
|
||
|
}
|
||
|
else:
|
||
|
execution_log["final_result"] = {
|
||
|
"success": False,
|
||
|
"error": "No steps completed successfully",
|
||
|
"plan": plan_data
|
||
|
}
|
||
|
|
||
|
except Exception as e:
|
||
|
execution_log["final_result"] = {
|
||
|
"success": False,
|
||
|
"error": str(e),
|
||
|
"plan": plan_data if 'plan_data' in locals() else None
|
||
|
}
|
||
|
|
||
|
execution_log["end_time"] = datetime.utcnow().isoformat()
|
||
|
return execution_log
|
||
|
|
||
|
|
||
|
# Example usage
|
||
|
if __name__ == "__main__":
|
||
|
load_dotenv()
|
||
|
|
||
|
# Example tool functions
|
||
|
def research_ira_requirements() -> Dict[str, Any]:
|
||
|
"""Research and return ROTH IRA eligibility requirements."""
|
||
|
return {
|
||
|
"age_requirement": "Must have earned income",
|
||
|
"income_limits": {"single": 144000, "married": 214000},
|
||
|
}
|
||
|
|
||
|
def calculate_contribution_limit(
|
||
|
income: float, tax_year: int
|
||
|
) -> Dict[str, float]:
|
||
|
"""Calculate maximum ROTH IRA contribution based on income and tax year."""
|
||
|
base_limit = 6000 if tax_year <= 2022 else 6500
|
||
|
if income > 144000:
|
||
|
return {"limit": 0}
|
||
|
return {"limit": base_limit}
|
||
|
|
||
|
def find_brokers(min_investment: float) -> List[Dict[str, Any]]:
|
||
|
"""Find suitable brokers for ROTH IRA based on minimum investment."""
|
||
|
return [
|
||
|
{"name": "Broker A", "min_investment": min_investment},
|
||
|
{
|
||
|
"name": "Broker B",
|
||
|
"min_investment": min_investment * 1.5,
|
||
|
},
|
||
|
]
|
||
|
|
||
|
# Initialize agent with tools
|
||
|
agent = ToolUsingAgent(
|
||
|
tools=[
|
||
|
research_ira_requirements,
|
||
|
calculate_contribution_limit,
|
||
|
find_brokers,
|
||
|
],
|
||
|
openai_api_key="",
|
||
|
)
|
||
|
|
||
|
# Run a task
|
||
|
result = agent.run(
|
||
|
"How can I establish a ROTH IRA to buy stocks and get a tax break? "
|
||
|
"What are the criteria?"
|
||
|
)
|
||
|
|
||
|
print(json.dumps(result, indent=2))
|