|
|
|
import pytest
|
|
|
|
from swarms.models.vllm import vLLM
|
|
|
|
|
|
|
|
|
|
|
|
# Fixture for initializing vLLM
|
|
|
|
@pytest.fixture
|
|
|
|
def vllm_instance():
|
|
|
|
return vLLM()
|
|
|
|
|
|
|
|
|
|
|
|
# Test the default initialization of vLLM
|
|
|
|
def test_vllm_default_init(vllm_instance):
|
|
|
|
assert isinstance(vllm_instance, vLLM)
|
|
|
|
assert vllm_instance.model_name == "facebook/opt-13b"
|
|
|
|
assert vllm_instance.tensor_parallel_size == 4
|
|
|
|
assert not vllm_instance.trust_remote_code
|
|
|
|
assert vllm_instance.revision is None
|
|
|
|
assert vllm_instance.temperature == 0.5
|
|
|
|
assert vllm_instance.top_p == 0.95
|
|
|
|
|
|
|
|
|
|
|
|
# Test custom initialization of vLLM
|
|
|
|
def test_vllm_custom_init():
|
|
|
|
vllm_instance = vLLM(
|
|
|
|
model_name="custom_model",
|
|
|
|
tensor_parallel_size=8,
|
|
|
|
trust_remote_code=True,
|
|
|
|
revision="123",
|
|
|
|
temperature=0.7,
|
|
|
|
top_p=0.9,
|
|
|
|
)
|
|
|
|
assert isinstance(vllm_instance, vLLM)
|
|
|
|
assert vllm_instance.model_name == "custom_model"
|
|
|
|
assert vllm_instance.tensor_parallel_size == 8
|
|
|
|
assert vllm_instance.trust_remote_code
|
|
|
|
assert vllm_instance.revision == "123"
|
|
|
|
assert vllm_instance.temperature == 0.7
|
|
|
|
assert vllm_instance.top_p == 0.9
|
|
|
|
|
|
|
|
|
|
|
|
# Test the run method of vLLM
|
|
|
|
def test_vllm_run(vllm_instance):
|
|
|
|
task = "Hello, vLLM!"
|
|
|
|
result = vllm_instance.run(task)
|
|
|
|
assert isinstance(result, str)
|
|
|
|
assert len(result) > 0
|
|
|
|
|
|
|
|
|
|
|
|
# Test run method with different temperature and top_p values
|
|
|
|
@pytest.mark.parametrize(
|
|
|
|
"temperature, top_p", [(0.2, 0.8), (0.8, 0.2)]
|
|
|
|
)
|
|
|
|
def test_vllm_run_with_params(vllm_instance, temperature, top_p):
|
|
|
|
task = "Temperature and Top-P Test"
|
|
|
|
result = vllm_instance.run(
|
|
|
|
task, temperature=temperature, top_p=top_p
|
|
|
|
)
|
|
|
|
assert isinstance(result, str)
|
|
|
|
assert len(result) > 0
|
|
|
|
|
|
|
|
|
|
|
|
# Test run method with a specific model revision
|
|
|
|
def test_vllm_run_with_revision(vllm_instance):
|
|
|
|
task = "Specific Model Revision Test"
|
|
|
|
result = vllm_instance.run(task, revision="abc123")
|
|
|
|
assert isinstance(result, str)
|
|
|
|
assert len(result) > 0
|
|
|
|
|
|
|
|
|
|
|
|
# Test run method with a specific model name
|
|
|
|
def test_vllm_run_with_custom_model(vllm_instance):
|
|
|
|
task = "Custom Model Test"
|
|
|
|
custom_model_name = "my_custom_model"
|
|
|
|
result = vllm_instance.run(task, model_name=custom_model_name)
|
|
|
|
assert isinstance(result, str)
|
|
|
|
assert len(result) > 0
|
|
|
|
assert vllm_instance.model_name == custom_model_name
|
|
|
|
|
|
|
|
|
|
|
|
# Test run method with invalid task input
|
|
|
|
def test_vllm_run_invalid_task(vllm_instance):
|
|
|
|
invalid_task = None
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
vllm_instance.run(invalid_task)
|
|
|
|
|
|
|
|
|
|
|
|
# Test run method with a very high temperature value
|
|
|
|
def test_vllm_run_high_temperature(vllm_instance):
|
|
|
|
task = "High Temperature Test"
|
|
|
|
high_temperature = 10.0
|
|
|
|
result = vllm_instance.run(task, temperature=high_temperature)
|
|
|
|
assert isinstance(result, str)
|
|
|
|
assert len(result) > 0
|
|
|
|
|
|
|
|
|
|
|
|
# Test run method with a very low top_p value
|
|
|
|
def test_vllm_run_low_top_p(vllm_instance):
|
|
|
|
task = "Low Top-P Test"
|
|
|
|
low_top_p = 0.01
|
|
|
|
result = vllm_instance.run(task, top_p=low_top_p)
|
|
|
|
assert isinstance(result, str)
|
|
|
|
assert len(result) > 0
|
|
|
|
|
|
|
|
|
|
|
|
# Test run method with an empty task
|
|
|
|
def test_vllm_run_empty_task(vllm_instance):
|
|
|
|
empty_task = ""
|
|
|
|
result = vllm_instance.run(empty_task)
|
|
|
|
assert isinstance(result, str)
|
|
|
|
assert len(result) == 0
|
|
|
|
|
|
|
|
|
|
|
|
# Test initialization with invalid parameters
|
|
|
|
def test_vllm_invalid_init():
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
vLLM(
|
|
|
|
model_name=None,
|
|
|
|
tensor_parallel_size=-1,
|
|
|
|
trust_remote_code="invalid",
|
|
|
|
revision=123,
|
|
|
|
temperature=-0.1,
|
|
|
|
top_p=1.1,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# Test running vLLM with a large number of parallel heads
|
|
|
|
def test_vllm_large_parallel_heads():
|
|
|
|
vllm_instance = vLLM(tensor_parallel_size=16)
|
|
|
|
task = "Large Parallel Heads Test"
|
|
|
|
result = vllm_instance.run(task)
|
|
|
|
assert isinstance(result, str)
|
|
|
|
assert len(result) > 0
|
|
|
|
|
|
|
|
|
|
|
|
# Test running vLLM with trust_remote_code set to True
|
|
|
|
def test_vllm_trust_remote_code():
|
|
|
|
vllm_instance = vLLM(trust_remote_code=True)
|
|
|
|
task = "Trust Remote Code Test"
|
|
|
|
result = vllm_instance.run(task)
|
|
|
|
assert isinstance(result, str)
|
|
|
|
assert len(result) > 0
|