You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
208 lines
6.9 KiB
208 lines
6.9 KiB
3 months ago
|
import os
|
||
|
import time
|
||
|
from typing import List, Dict, Any, Union
|
||
|
from pydantic import BaseModel, Field
|
||
|
from loguru import logger
|
||
|
from swarms import Agent
|
||
|
from swarm_models import OpenAIChat
|
||
|
from dotenv import load_dotenv
|
||
|
|
||
|
# Load environment variables
|
||
|
load_dotenv()
|
||
|
|
||
|
|
||
|
# Pydantic model to track metadata for each agent
|
||
|
class AgentMetadata(BaseModel):
|
||
|
agent_id: str
|
||
|
start_time: float = Field(default_factory=time.time)
|
||
|
end_time: Union[float, None] = None
|
||
|
task: str
|
||
|
output: Union[str, None] = None
|
||
|
error: Union[str, None] = None
|
||
|
status: str = "running"
|
||
|
|
||
|
|
||
|
# Worker Agent class
|
||
|
class WorkerAgent:
|
||
|
def __init__(
|
||
|
self,
|
||
|
agent_name: str,
|
||
|
system_prompt: str,
|
||
|
model_name: str = "gpt-4o-mini",
|
||
|
):
|
||
|
"""Initialize a Worker agent with its own model, name, and system prompt."""
|
||
|
api_key = os.getenv("OPENAI_API_KEY")
|
||
|
|
||
|
# Create the LLM model for the worker
|
||
|
self.model = OpenAIChat(
|
||
|
openai_api_key=api_key,
|
||
|
model_name=model_name,
|
||
|
temperature=0.1,
|
||
|
)
|
||
|
|
||
|
# Initialize the worker agent with a unique prompt and name
|
||
|
self.agent = Agent(
|
||
|
agent_name=agent_name,
|
||
|
system_prompt=system_prompt,
|
||
|
llm=self.model,
|
||
|
max_loops=1,
|
||
|
autosave=True,
|
||
|
dashboard=False,
|
||
|
verbose=True,
|
||
|
dynamic_temperature_enabled=True,
|
||
|
saved_state_path=f"{agent_name}_state.json",
|
||
|
user_name="swarms_corp",
|
||
|
retry_attempts=1,
|
||
|
context_length=200000,
|
||
|
return_step_meta=False,
|
||
|
)
|
||
|
|
||
|
def perform_task(self, task: str) -> Dict[str, Any]:
|
||
|
"""Perform the task assigned by the Queen and return the result."""
|
||
|
metadata = AgentMetadata(
|
||
|
agent_id=self.agent.agent_name, task=task
|
||
|
)
|
||
|
|
||
|
try:
|
||
|
logger.info(
|
||
|
f"{self.agent.agent_name} is starting task '{task}'."
|
||
|
)
|
||
|
result = self.agent.run(task)
|
||
|
metadata.output = result
|
||
|
metadata.status = "completed"
|
||
|
except Exception as e:
|
||
|
logger.error(
|
||
|
f"{self.agent.agent_name} encountered an error: {e}"
|
||
|
)
|
||
|
metadata.error = str(e)
|
||
|
metadata.status = "failed"
|
||
|
finally:
|
||
|
metadata.end_time = time.time()
|
||
|
return metadata.dict()
|
||
|
|
||
|
|
||
|
# Queen Agent class to manage the workers and dynamically decompose tasks
|
||
|
class QueenAgent:
|
||
|
def __init__(
|
||
|
self,
|
||
|
worker_count: int = 5,
|
||
|
model_name: str = "gpt-4o-mini",
|
||
|
queen_name: str = "Queen-Agent",
|
||
|
queen_prompt: str = "You are the queen of the hive",
|
||
|
):
|
||
|
"""Initialize the Queen agent who assigns tasks to workers.
|
||
|
|
||
|
Args:
|
||
|
worker_count (int): Number of worker agents to manage.
|
||
|
model_name (str): The model used by worker agents.
|
||
|
queen_name (str): The name of the Queen agent.
|
||
|
queen_prompt (str): The system prompt for the Queen agent.
|
||
|
"""
|
||
|
self.queen_name = queen_name
|
||
|
self.queen_prompt = queen_prompt
|
||
|
|
||
|
# Queen agent initialization with a unique prompt for dynamic task decomposition
|
||
|
api_key = os.getenv("OPENAI_API_KEY")
|
||
|
self.queen_model = OpenAIChat(
|
||
|
openai_api_key=api_key,
|
||
|
model_name=model_name,
|
||
|
temperature=0.1,
|
||
|
)
|
||
|
|
||
|
# Initialize worker agents
|
||
|
self.workers = [
|
||
|
WorkerAgent(
|
||
|
agent_name=f"Worker-{i+1}",
|
||
|
system_prompt=f"Worker agent {i+1}, specialized in helping with financial analysis.",
|
||
|
model_name=model_name,
|
||
|
)
|
||
|
for i in range(worker_count)
|
||
|
]
|
||
|
self.worker_metadata: Dict[str, AgentMetadata] = {}
|
||
|
|
||
|
def decompose_task(self, task: str) -> List[str]:
|
||
|
"""Dynamically decompose a task into multiple subtasks using prompting."""
|
||
|
decomposition_prompt = f"""You are a highly efficient problem solver. Given the following task:
|
||
|
'{task}', please decompose this task into 3-5 smaller subtasks, and explain how they can be completed step by step."""
|
||
|
|
||
|
logger.info(
|
||
|
f"{self.queen_name} is generating subtasks using prompting for the task: '{task}'"
|
||
|
)
|
||
|
|
||
|
# Use the queen's model to generate subtasks dynamically
|
||
|
subtasks_output = self.queen_model.run(decomposition_prompt)
|
||
|
logger.info(f"Queen output: {subtasks_output}")
|
||
|
subtasks = subtasks_output.split("\n")
|
||
|
|
||
|
# Filter and clean up subtasks
|
||
|
subtasks = [
|
||
|
subtask.strip() for subtask in subtasks if subtask.strip()
|
||
|
]
|
||
|
|
||
|
return subtasks
|
||
|
|
||
|
def assign_subtasks(self, subtasks: List[str]) -> Dict[str, Any]:
|
||
|
"""Assign subtasks to workers dynamically and collect their results.
|
||
|
|
||
|
Args:
|
||
|
subtasks (List[str]): The list of subtasks to distribute among workers.
|
||
|
|
||
|
Returns:
|
||
|
dict: A dictionary containing results from workers.
|
||
|
"""
|
||
|
logger.info(
|
||
|
f"{self.queen_name} is assigning subtasks to workers."
|
||
|
)
|
||
|
results = {}
|
||
|
|
||
|
for i, subtask in enumerate(subtasks):
|
||
|
# Assign each subtask to a different worker
|
||
|
worker = self.workers[
|
||
|
i % len(self.workers)
|
||
|
] # Circular assignment if more subtasks than workers
|
||
|
worker_result = worker.perform_task(subtask)
|
||
|
results[worker_result["agent_id"]] = worker_result
|
||
|
self.worker_metadata[worker_result["agent_id"]] = (
|
||
|
worker_result
|
||
|
)
|
||
|
|
||
|
return results
|
||
|
|
||
|
def gather_results(self) -> Dict[str, Any]:
|
||
|
"""Gather all results from the worker agents."""
|
||
|
return self.worker_metadata
|
||
|
|
||
|
def run_swarm(self, task: str) -> Dict[str, Any]:
|
||
|
"""Run the swarm by decomposing a task into subtasks, assigning them to workers, and gathering results."""
|
||
|
logger.info(f"{self.queen_name} is initializing the swarm.")
|
||
|
|
||
|
# Decompose the task into subtasks using prompting
|
||
|
subtasks = self.decompose_task(task)
|
||
|
logger.info(f"Subtasks generated by the Queen: {subtasks}")
|
||
|
|
||
|
# Assign subtasks to workers
|
||
|
results = self.assign_subtasks(subtasks)
|
||
|
|
||
|
logger.info(
|
||
|
f"{self.queen_name} has collected results from all workers."
|
||
|
)
|
||
|
return results
|
||
|
|
||
|
|
||
|
# Example usage
|
||
|
if __name__ == "__main__":
|
||
|
# Queen oversees 3 worker agents with a custom system prompt
|
||
|
queen = QueenAgent(
|
||
|
worker_count=3,
|
||
|
queen_name="Queen-Overseer",
|
||
|
queen_prompt="You are the overseer queen of a financial analysis swarm. Decompose and distribute tasks wisely.",
|
||
|
)
|
||
|
|
||
|
# Task for the swarm to execute
|
||
|
task = "Analyze the best strategies to establish a ROTH IRA and maximize tax savings."
|
||
|
|
||
|
# Run the swarm on the task and gather results
|
||
|
final_results = queen.run_swarm(task)
|
||
|
|
||
|
print("Final Swarm Results:", final_results)
|