|
|
|
from swarms import AgentRearrange, Agent
|
|
|
|
from swarm_models import OpenAIChat
|
|
|
|
from swarms.prompts.finance_agent_sys_prompt import (
|
|
|
|
FINANCIAL_AGENT_SYS_PROMPT,
|
|
|
|
)
|
|
|
|
from swarms.utils.data_to_text import data_to_text
|
|
|
|
|
|
|
|
model = OpenAIChat(max_tokens=3000)
|
|
|
|
|
|
|
|
# Initialize the agent
|
|
|
|
receipt_analyzer_agent = Agent(
|
|
|
|
agent_name="Receipt Analyzer",
|
|
|
|
system_prompt=FINANCIAL_AGENT_SYS_PROMPT,
|
|
|
|
llm=model,
|
|
|
|
max_loops=1,
|
|
|
|
autosave=True,
|
|
|
|
# dynamic_temperature_enabled=True,
|
|
|
|
dashboard=False,
|
|
|
|
verbose=True,
|
|
|
|
streaming_on=True,
|
|
|
|
# interactive=True, # Set to False to disable interactive mode
|
|
|
|
dynamic_temperature_enabled=True,
|
|
|
|
saved_state_path="finance_agent.json",
|
|
|
|
# tools=[Add your functions here# ],
|
|
|
|
# stopping_token="Stop!",
|
|
|
|
# interactive=True,
|
|
|
|
# docs_folder="docs", # Enter your folder name
|
|
|
|
# pdf_path="docs/finance_agent.pdf",
|
|
|
|
# sop="Calculate the profit for a company.",
|
|
|
|
# sop_list=["Calculate the profit for a company."],
|
|
|
|
user_name="swarms_corp",
|
|
|
|
# # docs=
|
|
|
|
# # docs_folder="docs",
|
|
|
|
retry_attempts=3,
|
|
|
|
# tool_schema = dict
|
|
|
|
# agent_ops_on=True,
|
|
|
|
# long_term_memory=ChromaDB(docs_folder="artifacts"),
|
|
|
|
# multi_modal=True
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# 2nd agent
|
|
|
|
analyst_agent = Agent(
|
|
|
|
agent_name="Analyst_Agent",
|
|
|
|
system_prompt=FINANCIAL_AGENT_SYS_PROMPT,
|
|
|
|
llm=model,
|
|
|
|
max_loops=1,
|
|
|
|
autosave=True,
|
|
|
|
# dynamic_temperature_enabled=True,
|
|
|
|
dashboard=False,
|
|
|
|
verbose=True,
|
|
|
|
streaming_on=True,
|
|
|
|
# interactive=True, # Set to False to disable interactive mode
|
|
|
|
dynamic_temperature_enabled=True,
|
|
|
|
saved_state_path="finance_agent.json",
|
|
|
|
# tools=[Add your functions here# ],
|
|
|
|
# stopping_token="Stop!",
|
|
|
|
# interactive=True,
|
|
|
|
# docs_folder="docs", # Enter your folder name
|
|
|
|
# pdf_path="docs/finance_agent.pdf",
|
|
|
|
# sop="Calculate the profit for a company.",
|
|
|
|
# sop_list=["Calculate the profit for a company."],
|
|
|
|
user_name="swarms_corp",
|
|
|
|
# # docs=
|
|
|
|
# # docs_folder="docs",
|
|
|
|
retry_attempts=3,
|
|
|
|
# tool_schema = dict
|
|
|
|
# agent_ops_on=True,
|
|
|
|
# long_term_memory=ChromaDB(docs_folder="artifacts"),
|
|
|
|
# multi_modal=True,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# sWARM
|
|
|
|
agents = [receipt_analyzer_agent, analyst_agent]
|
|
|
|
|
|
|
|
# Flow
|
|
|
|
flow = f"{receipt_analyzer_agent.agent_name} -> {analyst_agent.agent_name} -> H"
|
|
|
|
pdf = data_to_text("receipt.pdf")
|
|
|
|
|
|
|
|
# Swarm
|
|
|
|
swarm = AgentRearrange(
|
|
|
|
agents=agents,
|
|
|
|
flow=flow,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Run the swarm
|
|
|
|
swarm.run(
|
|
|
|
f"Analyze this PDF: {pdf} and return a summary of the expense and if it's necessary"
|
|
|
|
)
|