You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/scripts/auto_docs.py

95 lines
2.4 KiB

###### VERISON2
import inspect
import os
import threading
from dotenv import load_dotenv
from scripts.auto_tests_docs.docs import DOCUMENTATION_WRITER_SOP
from swarms import OpenAIChat
##########
from swarms.tokenizers.r_tokenizers import (
SentencePieceTokenizer,
HuggingFaceTokenizer,
Tokenizer,
)
from swarms.tokenizers.base_tokenizer import BaseTokenizer
from swarms.tokenizers.openai_tokenizers import OpenAITokenizer
from swarms.tokenizers.anthropic_tokenizer import (
AnthropicTokenizer,
)
from swarms.tokenizers.cohere_tokenizer import CohereTokenizer
####################
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY")
model = OpenAIChat(
openai_api_key=api_key,
max_tokens=4000,
)
def process_documentation(cls):
"""
Process the documentation for a given class using OpenAI model and save it in a Markdown file.
"""
doc = inspect.getdoc(cls)
source = inspect.getsource(cls)
input_content = (
"Class Name:"
f" {cls.__name__}\n\nDocumentation:\n{doc}\n\nSource"
f" Code:\n{source}"
)
# Process with OpenAI model (assuming the model's __call__ method takes this input and returns processed content)
processed_content = model(
DOCUMENTATION_WRITER_SOP(input_content, "swarms.tokenizers")
)
# doc_content = f"# {cls.__name__}\n\n{processed_content}\n"
doc_content = f"{processed_content}\n"
# Create the directory if it doesn't exist
dir_path = "docs/swarms/tokenizers"
os.makedirs(dir_path, exist_ok=True)
# Write the processed documentation to a Markdown file
file_path = os.path.join(dir_path, f"{cls.__name__.lower()}.md")
with open(file_path, "w") as file:
file.write(doc_content)
print(f"Documentation generated for {cls.__name__}.")
def main():
classes = [
SentencePieceTokenizer,
HuggingFaceTokenizer,
Tokenizer,
BaseTokenizer,
OpenAITokenizer,
AnthropicTokenizer,
CohereTokenizer,
]
threads = []
for cls in classes:
1 year ago
thread = threading.Thread(
target=process_documentation, args=(cls,)
)
threads.append(thread)
thread.start()
# Wait for all threads to complete
for thread in threads:
thread.join()
print("Documentation generated in 'swarms.tokenizers' directory.")
if __name__ == "__main__":
main()