You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
83 lines
2.2 KiB
83 lines
2.2 KiB
6 months ago
|
from typing import List, Optional
|
||
|
|
||
|
from langchain.agents import AgentExecutor, LLMSingleActionAgent, Tool
|
||
|
from langchain.chains import LLMChain
|
||
5 months ago
|
from langchain_community.llms import OpenAI
|
||
6 months ago
|
from langchain.prompts import StringPromptTemplate
|
||
|
from langchain.tools import DuckDuckGoSearchRun
|
||
|
|
||
|
from swarms import Agent
|
||
|
|
||
|
|
||
|
class LangchainAgentWrapper(Agent):
|
||
|
"""
|
||
|
Initialize the LangchainAgentWrapper.
|
||
|
|
||
|
Args:
|
||
|
name (str): The name of the agent.
|
||
|
tools (List[Tool]): The list of tools available to the agent.
|
||
|
llm (Optional[OpenAI], optional): The OpenAI language model to use. Defaults to None.
|
||
|
"""
|
||
|
|
||
|
def __init__(
|
||
|
self,
|
||
|
name: str,
|
||
|
tools: List[Tool],
|
||
|
llm: Optional[OpenAI] = None,
|
||
|
*args,
|
||
|
**kwargs,
|
||
|
):
|
||
|
super().__init__(*args, **kwargs)
|
||
|
self.name = name
|
||
|
self.tools = tools
|
||
|
self.llm = llm or OpenAI(temperature=0)
|
||
|
|
||
|
prompt = StringPromptTemplate.from_template(
|
||
|
"You are {name}, an AI assistant. Answer the following question: {question}"
|
||
|
)
|
||
|
|
||
|
llm_chain = LLMChain(llm=self.llm, prompt=prompt)
|
||
|
tool_names = [tool.name for tool in self.tools]
|
||
|
|
||
|
self.agent = LLMSingleActionAgent(
|
||
|
llm_chain=llm_chain,
|
||
|
output_parser=None,
|
||
|
stop=["\nObservation:"],
|
||
|
allowed_tools=tool_names,
|
||
|
)
|
||
|
|
||
|
self.agent_executor = AgentExecutor.from_agent_and_tools(
|
||
|
agent=self.agent, tools=self.tools, verbose=True
|
||
|
)
|
||
|
|
||
|
def run(self, task: str, *args, **kwargs):
|
||
|
"""
|
||
|
Run the agent with the given task.
|
||
|
|
||
|
Args:
|
||
|
task (str): The task to be performed by the agent.
|
||
|
|
||
|
Returns:
|
||
|
Any: The result of the agent's execution.
|
||
|
"""
|
||
|
try:
|
||
|
return self.agent_executor.run(task)
|
||
|
except Exception as e:
|
||
|
print(f"An error occurred: {e}")
|
||
|
|
||
|
|
||
|
# Usage example
|
||
|
|
||
|
search_tool = DuckDuckGoSearchRun()
|
||
|
tools = [
|
||
|
Tool(
|
||
|
name="Search",
|
||
|
func=search_tool.run,
|
||
|
description="Useful for searching the internet",
|
||
|
)
|
||
|
]
|
||
|
|
||
|
langchain_wrapper = LangchainAgentWrapper("LangchainAssistant", tools)
|
||
|
result = langchain_wrapper.run("What is the capital of France?")
|
||
|
print(result)
|