|
|
|
import os
|
|
|
|
from unittest.mock import Mock, patch
|
|
|
|
|
|
|
|
import pytest
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
|
|
|
|
from swarms.models.cohere_chat import BaseCohere, Cohere
|
|
|
|
|
|
|
|
# Load the environment variables
|
|
|
|
load_dotenv()
|
|
|
|
api_key = os.getenv("COHERE_API_KEY")
|
|
|
|
|
|
|
|
|
|
|
|
@pytest.fixture
|
|
|
|
def cohere_instance():
|
|
|
|
return Cohere(cohere_api_key=api_key)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_custom_configuration(cohere_instance):
|
|
|
|
# Test customizing Cohere configurations
|
|
|
|
cohere_instance.model = "base"
|
|
|
|
cohere_instance.temperature = 0.5
|
|
|
|
cohere_instance.max_tokens = 100
|
|
|
|
cohere_instance.k = 1
|
|
|
|
cohere_instance.p = 0.8
|
|
|
|
cohere_instance.frequency_penalty = 0.2
|
|
|
|
cohere_instance.presence_penalty = 0.4
|
|
|
|
response = cohere_instance("Customize configurations.")
|
|
|
|
assert isinstance(response, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_api_error_handling(cohere_instance):
|
|
|
|
# Test error handling when the API key is invalid
|
|
|
|
cohere_instance.model = "base"
|
|
|
|
cohere_instance.cohere_api_key = "invalid-api-key"
|
|
|
|
with pytest.raises(Exception):
|
|
|
|
cohere_instance("Error handling with invalid API key.")
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_async_api_error_handling(cohere_instance):
|
|
|
|
# Test async error handling when the API key is invalid
|
|
|
|
cohere_instance.model = "base"
|
|
|
|
cohere_instance.cohere_api_key = "invalid-api-key"
|
|
|
|
with pytest.raises(Exception):
|
|
|
|
cohere_instance.async_call("Error handling with invalid API key.")
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_stream_api_error_handling(cohere_instance):
|
|
|
|
# Test error handling in streaming mode when the API key is invalid
|
|
|
|
cohere_instance.model = "base"
|
|
|
|
cohere_instance.cohere_api_key = "invalid-api-key"
|
|
|
|
with pytest.raises(Exception):
|
|
|
|
generator = cohere_instance.stream(
|
|
|
|
"Error handling with invalid API key."
|
|
|
|
)
|
|
|
|
for token in generator:
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_streaming_mode(cohere_instance):
|
|
|
|
# Test the streaming mode for large text generation
|
|
|
|
cohere_instance.model = "base"
|
|
|
|
cohere_instance.streaming = True
|
|
|
|
prompt = "Generate a lengthy text using streaming mode."
|
|
|
|
generator = cohere_instance.stream(prompt)
|
|
|
|
for token in generator:
|
|
|
|
assert isinstance(token, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_streaming_mode_async(cohere_instance):
|
|
|
|
# Test the async streaming mode for large text generation
|
|
|
|
cohere_instance.model = "base"
|
|
|
|
cohere_instance.streaming = True
|
|
|
|
prompt = "Generate a lengthy text using async streaming mode."
|
|
|
|
async_generator = cohere_instance.async_stream(prompt)
|
|
|
|
for token in async_generator:
|
|
|
|
assert isinstance(token, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_wrap_prompt(cohere_instance):
|
|
|
|
prompt = "What is the meaning of life?"
|
|
|
|
wrapped_prompt = cohere_instance._wrap_prompt(prompt)
|
|
|
|
assert wrapped_prompt.startswith(cohere_instance.HUMAN_PROMPT)
|
|
|
|
assert wrapped_prompt.endswith(cohere_instance.AI_PROMPT)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_convert_prompt(cohere_instance):
|
|
|
|
prompt = "What is the meaning of life?"
|
|
|
|
converted_prompt = cohere_instance.convert_prompt(prompt)
|
|
|
|
assert converted_prompt.startswith(cohere_instance.HUMAN_PROMPT)
|
|
|
|
assert converted_prompt.endswith(cohere_instance.AI_PROMPT)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_call_with_stop(cohere_instance):
|
|
|
|
response = cohere_instance(
|
|
|
|
"Translate to French.", stop=["stop1", "stop2"]
|
|
|
|
)
|
|
|
|
assert response == "Mocked Response from Cohere"
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_stream_with_stop(cohere_instance):
|
|
|
|
generator = cohere_instance.stream(
|
|
|
|
"Write a story.", stop=["stop1", "stop2"]
|
|
|
|
)
|
|
|
|
for token in generator:
|
|
|
|
assert isinstance(token, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_async_call_with_stop(cohere_instance):
|
|
|
|
response = cohere_instance.async_call(
|
|
|
|
"Tell me a joke.", stop=["stop1", "stop2"]
|
|
|
|
)
|
|
|
|
assert response == "Mocked Response from Cohere"
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_async_stream_with_stop(cohere_instance):
|
|
|
|
async_generator = cohere_instance.async_stream(
|
|
|
|
"Translate to French.", stop=["stop1", "stop2"]
|
|
|
|
)
|
|
|
|
for token in async_generator:
|
|
|
|
assert isinstance(token, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_get_num_tokens_with_count_tokens(cohere_instance):
|
|
|
|
cohere_instance.count_tokens = Mock(return_value=10)
|
|
|
|
text = "This is a test sentence."
|
|
|
|
num_tokens = cohere_instance.get_num_tokens(text)
|
|
|
|
assert num_tokens == 10
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_get_num_tokens_without_count_tokens(cohere_instance):
|
|
|
|
del cohere_instance.count_tokens
|
|
|
|
with pytest.raises(NameError):
|
|
|
|
text = "This is a test sentence."
|
|
|
|
cohere_instance.get_num_tokens(text)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_wrap_prompt_without_human_ai_prompt(cohere_instance):
|
|
|
|
del cohere_instance.HUMAN_PROMPT
|
|
|
|
del cohere_instance.AI_PROMPT
|
|
|
|
prompt = "What is the meaning of life?"
|
|
|
|
with pytest.raises(NameError):
|
|
|
|
cohere_instance._wrap_prompt(prompt)
|
|
|
|
|
|
|
|
|
|
|
|
def test_base_cohere_import():
|
|
|
|
with patch.dict("sys.modules", {"cohere": None}):
|
|
|
|
with pytest.raises(ImportError):
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
|
|
def test_base_cohere_validate_environment():
|
|
|
|
values = {
|
|
|
|
"cohere_api_key": "my-api-key",
|
|
|
|
"user_agent": "langchain",
|
|
|
|
}
|
|
|
|
validated_values = BaseCohere.validate_environment(values)
|
|
|
|
assert "client" in validated_values
|
|
|
|
assert "async_client" in validated_values
|
|
|
|
|
|
|
|
|
|
|
|
def test_base_cohere_validate_environment_without_cohere():
|
|
|
|
values = {
|
|
|
|
"cohere_api_key": "my-api-key",
|
|
|
|
"user_agent": "langchain",
|
|
|
|
}
|
|
|
|
with patch.dict("sys.modules", {"cohere": None}):
|
|
|
|
with pytest.raises(ImportError):
|
|
|
|
BaseCohere.validate_environment(values)
|
|
|
|
|
|
|
|
|
|
|
|
# Test cases for benchmarking generations with various models
|
|
|
|
def test_cohere_generate_with_command_light(cohere_instance):
|
|
|
|
cohere_instance.model = "command-light"
|
|
|
|
response = cohere_instance("Generate text with Command Light model.")
|
|
|
|
assert response.startswith("Generated text with Command Light model")
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_generate_with_command(cohere_instance):
|
|
|
|
cohere_instance.model = "command"
|
|
|
|
response = cohere_instance("Generate text with Command model.")
|
|
|
|
assert response.startswith("Generated text with Command model")
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_generate_with_base_light(cohere_instance):
|
|
|
|
cohere_instance.model = "base-light"
|
|
|
|
response = cohere_instance("Generate text with Base Light model.")
|
|
|
|
assert response.startswith("Generated text with Base Light model")
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_generate_with_base(cohere_instance):
|
|
|
|
cohere_instance.model = "base"
|
|
|
|
response = cohere_instance("Generate text with Base model.")
|
|
|
|
assert response.startswith("Generated text with Base model")
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_generate_with_embed_english_v2(cohere_instance):
|
|
|
|
cohere_instance.model = "embed-english-v2.0"
|
|
|
|
response = cohere_instance(
|
|
|
|
"Generate embeddings with English v2.0 model."
|
|
|
|
)
|
|
|
|
assert response.startswith(
|
|
|
|
"Generated embeddings with English v2.0 model"
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_generate_with_embed_english_light_v2(cohere_instance):
|
|
|
|
cohere_instance.model = "embed-english-light-v2.0"
|
|
|
|
response = cohere_instance(
|
|
|
|
"Generate embeddings with English Light v2.0 model."
|
|
|
|
)
|
|
|
|
assert response.startswith(
|
|
|
|
"Generated embeddings with English Light v2.0 model"
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_generate_with_embed_multilingual_v2(cohere_instance):
|
|
|
|
cohere_instance.model = "embed-multilingual-v2.0"
|
|
|
|
response = cohere_instance(
|
|
|
|
"Generate embeddings with Multilingual v2.0 model."
|
|
|
|
)
|
|
|
|
assert response.startswith(
|
|
|
|
"Generated embeddings with Multilingual v2.0 model"
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_generate_with_embed_english_v3(cohere_instance):
|
|
|
|
cohere_instance.model = "embed-english-v3.0"
|
|
|
|
response = cohere_instance(
|
|
|
|
"Generate embeddings with English v3.0 model."
|
|
|
|
)
|
|
|
|
assert response.startswith(
|
|
|
|
"Generated embeddings with English v3.0 model"
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_generate_with_embed_english_light_v3(cohere_instance):
|
|
|
|
cohere_instance.model = "embed-english-light-v3.0"
|
|
|
|
response = cohere_instance(
|
|
|
|
"Generate embeddings with English Light v3.0 model."
|
|
|
|
)
|
|
|
|
assert response.startswith(
|
|
|
|
"Generated embeddings with English Light v3.0 model"
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_generate_with_embed_multilingual_v3(cohere_instance):
|
|
|
|
cohere_instance.model = "embed-multilingual-v3.0"
|
|
|
|
response = cohere_instance(
|
|
|
|
"Generate embeddings with Multilingual v3.0 model."
|
|
|
|
)
|
|
|
|
assert response.startswith(
|
|
|
|
"Generated embeddings with Multilingual v3.0 model"
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_generate_with_embed_multilingual_light_v3(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
cohere_instance.model = "embed-multilingual-light-v3.0"
|
|
|
|
response = cohere_instance(
|
|
|
|
"Generate embeddings with Multilingual Light v3.0 model."
|
|
|
|
)
|
|
|
|
assert response.startswith(
|
|
|
|
"Generated embeddings with Multilingual Light v3.0 model"
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# Add more test cases to benchmark other models and functionalities
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_call_with_command_model(cohere_instance):
|
|
|
|
cohere_instance.model = "command"
|
|
|
|
response = cohere_instance("Translate to French.")
|
|
|
|
assert isinstance(response, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_call_with_base_model(cohere_instance):
|
|
|
|
cohere_instance.model = "base"
|
|
|
|
response = cohere_instance("Translate to French.")
|
|
|
|
assert isinstance(response, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_call_with_embed_english_v2_model(cohere_instance):
|
|
|
|
cohere_instance.model = "embed-english-v2.0"
|
|
|
|
response = cohere_instance("Translate to French.")
|
|
|
|
assert isinstance(response, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_call_with_embed_english_v3_model(cohere_instance):
|
|
|
|
cohere_instance.model = "embed-english-v3.0"
|
|
|
|
response = cohere_instance("Translate to French.")
|
|
|
|
assert isinstance(response, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_call_with_embed_multilingual_v2_model(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
cohere_instance.model = "embed-multilingual-v2.0"
|
|
|
|
response = cohere_instance("Translate to French.")
|
|
|
|
assert isinstance(response, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_call_with_embed_multilingual_v3_model(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
cohere_instance.model = "embed-multilingual-v3.0"
|
|
|
|
response = cohere_instance("Translate to French.")
|
|
|
|
assert isinstance(response, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_call_with_invalid_model(cohere_instance):
|
|
|
|
cohere_instance.model = "invalid-model"
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
cohere_instance("Translate to French.")
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_call_with_long_prompt(cohere_instance):
|
|
|
|
prompt = "This is a very long prompt. " * 100
|
|
|
|
response = cohere_instance(prompt)
|
|
|
|
assert isinstance(response, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_call_with_max_tokens_limit_exceeded(cohere_instance):
|
|
|
|
cohere_instance.max_tokens = 10
|
|
|
|
prompt = "This is a test prompt that will exceed the max tokens limit."
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
cohere_instance(prompt)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_stream_with_command_model(cohere_instance):
|
|
|
|
cohere_instance.model = "command"
|
|
|
|
generator = cohere_instance.stream("Write a story.")
|
|
|
|
for token in generator:
|
|
|
|
assert isinstance(token, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_stream_with_base_model(cohere_instance):
|
|
|
|
cohere_instance.model = "base"
|
|
|
|
generator = cohere_instance.stream("Write a story.")
|
|
|
|
for token in generator:
|
|
|
|
assert isinstance(token, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_stream_with_embed_english_v2_model(cohere_instance):
|
|
|
|
cohere_instance.model = "embed-english-v2.0"
|
|
|
|
generator = cohere_instance.stream("Write a story.")
|
|
|
|
for token in generator:
|
|
|
|
assert isinstance(token, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_stream_with_embed_english_v3_model(cohere_instance):
|
|
|
|
cohere_instance.model = "embed-english-v3.0"
|
|
|
|
generator = cohere_instance.stream("Write a story.")
|
|
|
|
for token in generator:
|
|
|
|
assert isinstance(token, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_stream_with_embed_multilingual_v2_model(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
cohere_instance.model = "embed-multilingual-v2.0"
|
|
|
|
generator = cohere_instance.stream("Write a story.")
|
|
|
|
for token in generator:
|
|
|
|
assert isinstance(token, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_stream_with_embed_multilingual_v3_model(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
cohere_instance.model = "embed-multilingual-v3.0"
|
|
|
|
generator = cohere_instance.stream("Write a story.")
|
|
|
|
for token in generator:
|
|
|
|
assert isinstance(token, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_async_call_with_command_model(cohere_instance):
|
|
|
|
cohere_instance.model = "command"
|
|
|
|
response = cohere_instance.async_call("Translate to French.")
|
|
|
|
assert isinstance(response, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_async_call_with_base_model(cohere_instance):
|
|
|
|
cohere_instance.model = "base"
|
|
|
|
response = cohere_instance.async_call("Translate to French.")
|
|
|
|
assert isinstance(response, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_async_call_with_embed_english_v2_model(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
cohere_instance.model = "embed-english-v2.0"
|
|
|
|
response = cohere_instance.async_call("Translate to French.")
|
|
|
|
assert isinstance(response, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_async_call_with_embed_english_v3_model(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
cohere_instance.model = "embed-english-v3.0"
|
|
|
|
response = cohere_instance.async_call("Translate to French.")
|
|
|
|
assert isinstance(response, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_async_call_with_embed_multilingual_v2_model(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
cohere_instance.model = "embed-multilingual-v2.0"
|
|
|
|
response = cohere_instance.async_call("Translate to French.")
|
|
|
|
assert isinstance(response, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_async_call_with_embed_multilingual_v3_model(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
cohere_instance.model = "embed-multilingual-v3.0"
|
|
|
|
response = cohere_instance.async_call("Translate to French.")
|
|
|
|
assert isinstance(response, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_async_stream_with_command_model(cohere_instance):
|
|
|
|
cohere_instance.model = "command"
|
|
|
|
async_generator = cohere_instance.async_stream("Write a story.")
|
|
|
|
for token in async_generator:
|
|
|
|
assert isinstance(token, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_async_stream_with_base_model(cohere_instance):
|
|
|
|
cohere_instance.model = "base"
|
|
|
|
async_generator = cohere_instance.async_stream("Write a story.")
|
|
|
|
for token in async_generator:
|
|
|
|
assert isinstance(token, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_async_stream_with_embed_english_v2_model(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
cohere_instance.model = "embed-english-v2.0"
|
|
|
|
async_generator = cohere_instance.async_stream("Write a story.")
|
|
|
|
for token in async_generator:
|
|
|
|
assert isinstance(token, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_async_stream_with_embed_english_v3_model(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
cohere_instance.model = "embed-english-v3.0"
|
|
|
|
async_generator = cohere_instance.async_stream("Write a story.")
|
|
|
|
for token in async_generator:
|
|
|
|
assert isinstance(token, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_async_stream_with_embed_multilingual_v2_model(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
cohere_instance.model = "embed-multilingual-v2.0"
|
|
|
|
async_generator = cohere_instance.async_stream("Write a story.")
|
|
|
|
for token in async_generator:
|
|
|
|
assert isinstance(token, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_async_stream_with_embed_multilingual_v3_model(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
cohere_instance.model = "embed-multilingual-v3.0"
|
|
|
|
async_generator = cohere_instance.async_stream("Write a story.")
|
|
|
|
for token in async_generator:
|
|
|
|
assert isinstance(token, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_representation_model_embedding(cohere_instance):
|
|
|
|
# Test using the Representation model for text embedding
|
|
|
|
cohere_instance.model = "embed-english-v3.0"
|
|
|
|
embedding = cohere_instance.embed(
|
|
|
|
"Generate an embedding for this text."
|
|
|
|
)
|
|
|
|
assert isinstance(embedding, list)
|
|
|
|
assert len(embedding) > 0
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_representation_model_classification(cohere_instance):
|
|
|
|
# Test using the Representation model for text classification
|
|
|
|
cohere_instance.model = "embed-english-v3.0"
|
|
|
|
classification = cohere_instance.classify("Classify this text.")
|
|
|
|
assert isinstance(classification, dict)
|
|
|
|
assert "class" in classification
|
|
|
|
assert "score" in classification
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_representation_model_language_detection(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
# Test using the Representation model for language detection
|
|
|
|
cohere_instance.model = "embed-english-v3.0"
|
|
|
|
language = cohere_instance.detect_language(
|
|
|
|
"Detect the language of this text."
|
|
|
|
)
|
|
|
|
assert isinstance(language, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_representation_model_max_tokens_limit_exceeded(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
# Test handling max tokens limit exceeded error
|
|
|
|
cohere_instance.model = "embed-english-v3.0"
|
|
|
|
cohere_instance.max_tokens = 10
|
|
|
|
prompt = "This is a test prompt that will exceed the max tokens limit."
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
cohere_instance.embed(prompt)
|
|
|
|
|
|
|
|
|
|
|
|
# Add more production-grade test cases based on real-world scenarios
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_representation_model_multilingual_embedding(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
# Test using the Representation model for multilingual text embedding
|
|
|
|
cohere_instance.model = "embed-multilingual-v3.0"
|
|
|
|
embedding = cohere_instance.embed("Generate multilingual embeddings.")
|
|
|
|
assert isinstance(embedding, list)
|
|
|
|
assert len(embedding) > 0
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_representation_model_multilingual_classification(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
# Test using the Representation model for multilingual text classification
|
|
|
|
cohere_instance.model = "embed-multilingual-v3.0"
|
|
|
|
classification = cohere_instance.classify(
|
|
|
|
"Classify multilingual text."
|
|
|
|
)
|
|
|
|
assert isinstance(classification, dict)
|
|
|
|
assert "class" in classification
|
|
|
|
assert "score" in classification
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_representation_model_multilingual_language_detection(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
# Test using the Representation model for multilingual language detection
|
|
|
|
cohere_instance.model = "embed-multilingual-v3.0"
|
|
|
|
language = cohere_instance.detect_language(
|
|
|
|
"Detect the language of multilingual text."
|
|
|
|
)
|
|
|
|
assert isinstance(language, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_representation_model_multilingual_max_tokens_limit_exceeded(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
# Test handling max tokens limit exceeded error for multilingual model
|
|
|
|
cohere_instance.model = "embed-multilingual-v3.0"
|
|
|
|
cohere_instance.max_tokens = 10
|
|
|
|
prompt = (
|
|
|
|
"This is a test prompt that will exceed the max tokens limit"
|
|
|
|
" for multilingual model."
|
|
|
|
)
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
cohere_instance.embed(prompt)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_representation_model_multilingual_light_embedding(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
# Test using the Representation model for multilingual light text embedding
|
|
|
|
cohere_instance.model = "embed-multilingual-light-v3.0"
|
|
|
|
embedding = cohere_instance.embed(
|
|
|
|
"Generate multilingual light embeddings."
|
|
|
|
)
|
|
|
|
assert isinstance(embedding, list)
|
|
|
|
assert len(embedding) > 0
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_representation_model_multilingual_light_classification(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
# Test using the Representation model for multilingual light text classification
|
|
|
|
cohere_instance.model = "embed-multilingual-light-v3.0"
|
|
|
|
classification = cohere_instance.classify(
|
|
|
|
"Classify multilingual light text."
|
|
|
|
)
|
|
|
|
assert isinstance(classification, dict)
|
|
|
|
assert "class" in classification
|
|
|
|
assert "score" in classification
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_representation_model_multilingual_light_language_detection(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
# Test using the Representation model for multilingual light language detection
|
|
|
|
cohere_instance.model = "embed-multilingual-light-v3.0"
|
|
|
|
language = cohere_instance.detect_language(
|
|
|
|
"Detect the language of multilingual light text."
|
|
|
|
)
|
|
|
|
assert isinstance(language, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_representation_model_multilingual_light_max_tokens_limit_exceeded(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
# Test handling max tokens limit exceeded error for multilingual light model
|
|
|
|
cohere_instance.model = "embed-multilingual-light-v3.0"
|
|
|
|
cohere_instance.max_tokens = 10
|
|
|
|
prompt = (
|
|
|
|
"This is a test prompt that will exceed the max tokens limit"
|
|
|
|
" for multilingual light model."
|
|
|
|
)
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
cohere_instance.embed(prompt)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_command_light_model(cohere_instance):
|
|
|
|
# Test using the Command Light model for text generation
|
|
|
|
cohere_instance.model = "command-light"
|
|
|
|
response = cohere_instance("Generate text using Command Light model.")
|
|
|
|
assert isinstance(response, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_base_light_model(cohere_instance):
|
|
|
|
# Test using the Base Light model for text generation
|
|
|
|
cohere_instance.model = "base-light"
|
|
|
|
response = cohere_instance("Generate text using Base Light model.")
|
|
|
|
assert isinstance(response, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_generate_summarize_endpoint(cohere_instance):
|
|
|
|
# Test using the Co.summarize() endpoint for text summarization
|
|
|
|
cohere_instance.model = "command"
|
|
|
|
response = cohere_instance.summarize("Summarize this text.")
|
|
|
|
assert isinstance(response, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_representation_model_english_embedding(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
# Test using the Representation model for English text embedding
|
|
|
|
cohere_instance.model = "embed-english-v3.0"
|
|
|
|
embedding = cohere_instance.embed("Generate English embeddings.")
|
|
|
|
assert isinstance(embedding, list)
|
|
|
|
assert len(embedding) > 0
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_representation_model_english_classification(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
# Test using the Representation model for English text classification
|
|
|
|
cohere_instance.model = "embed-english-v3.0"
|
|
|
|
classification = cohere_instance.classify("Classify English text.")
|
|
|
|
assert isinstance(classification, dict)
|
|
|
|
assert "class" in classification
|
|
|
|
assert "score" in classification
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_representation_model_english_language_detection(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
# Test using the Representation model for English language detection
|
|
|
|
cohere_instance.model = "embed-english-v3.0"
|
|
|
|
language = cohere_instance.detect_language(
|
|
|
|
"Detect the language of English text."
|
|
|
|
)
|
|
|
|
assert isinstance(language, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_representation_model_english_max_tokens_limit_exceeded(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
# Test handling max tokens limit exceeded error for English model
|
|
|
|
cohere_instance.model = "embed-english-v3.0"
|
|
|
|
cohere_instance.max_tokens = 10
|
|
|
|
prompt = (
|
|
|
|
"This is a test prompt that will exceed the max tokens limit"
|
|
|
|
" for English model."
|
|
|
|
)
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
cohere_instance.embed(prompt)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_representation_model_english_light_embedding(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
# Test using the Representation model for English light text embedding
|
|
|
|
cohere_instance.model = "embed-english-light-v3.0"
|
|
|
|
embedding = cohere_instance.embed("Generate English light embeddings.")
|
|
|
|
assert isinstance(embedding, list)
|
|
|
|
assert len(embedding) > 0
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_representation_model_english_light_classification(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
# Test using the Representation model for English light text classification
|
|
|
|
cohere_instance.model = "embed-english-light-v3.0"
|
|
|
|
classification = cohere_instance.classify(
|
|
|
|
"Classify English light text."
|
|
|
|
)
|
|
|
|
assert isinstance(classification, dict)
|
|
|
|
assert "class" in classification
|
|
|
|
assert "score" in classification
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_representation_model_english_light_language_detection(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
# Test using the Representation model for English light language detection
|
|
|
|
cohere_instance.model = "embed-english-light-v3.0"
|
|
|
|
language = cohere_instance.detect_language(
|
|
|
|
"Detect the language of English light text."
|
|
|
|
)
|
|
|
|
assert isinstance(language, str)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_representation_model_english_light_max_tokens_limit_exceeded(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
# Test handling max tokens limit exceeded error for English light model
|
|
|
|
cohere_instance.model = "embed-english-light-v3.0"
|
|
|
|
cohere_instance.max_tokens = 10
|
|
|
|
prompt = (
|
|
|
|
"This is a test prompt that will exceed the max tokens limit"
|
|
|
|
" for English light model."
|
|
|
|
)
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
cohere_instance.embed(prompt)
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_command_model(cohere_instance):
|
|
|
|
# Test using the Command model for text generation
|
|
|
|
cohere_instance.model = "command"
|
|
|
|
response = cohere_instance("Generate text using the Command model.")
|
|
|
|
assert isinstance(response, str)
|
|
|
|
|
|
|
|
|
|
|
|
# Add more production-grade test cases based on real-world scenarios
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_invalid_model(cohere_instance):
|
|
|
|
# Test using an invalid model name
|
|
|
|
cohere_instance.model = "invalid-model"
|
|
|
|
with pytest.raises(ValueError):
|
|
|
|
cohere_instance("Generate text using an invalid model.")
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_base_model_generation_with_max_tokens(
|
|
|
|
cohere_instance,
|
|
|
|
):
|
|
|
|
# Test generating text using the base model with a specified max_tokens limit
|
|
|
|
cohere_instance.model = "base"
|
|
|
|
cohere_instance.max_tokens = 20
|
|
|
|
prompt = "Generate text with max_tokens limit."
|
|
|
|
response = cohere_instance(prompt)
|
|
|
|
assert len(response.split()) <= 20
|
|
|
|
|
|
|
|
|
|
|
|
def test_cohere_command_light_generation_with_stop(cohere_instance):
|
|
|
|
# Test generating text using the command-light model with stop words
|
|
|
|
cohere_instance.model = "command-light"
|
|
|
|
prompt = "Generate text with stop words."
|
|
|
|
stop = ["stop", "words"]
|
|
|
|
response = cohere_instance(prompt, stop=stop)
|
|
|
|
assert all(word not in response for word in stop)
|