diff --git a/DOCS/agents/README.md b/DOCS/agents/README.md new file mode 100644 index 00000000..c45d390f --- /dev/null +++ b/DOCS/agents/README.md @@ -0,0 +1,116 @@ +# Swarms Documentation +==================== + +## Language Models +--------------- + +Language models are the driving force of our agents. They are responsible for generating text based on a given prompt. We currently support two types of language models: Anthropic and HuggingFace. + +### Anthropic + +The `Anthropic` class is a wrapper for the Anthropic large language models. + +#### Initialization + +``` +Anthropic(model="claude-2", max_tokens_to_sample=256, temperature=None, top_k=None, top_p=None, streaming=False, default_request_timeout=None) +``` + +Copy code + +##### Parameters + +- `model` (str, optional): The name of the model to use. Default is "claude-2". +- `max_tokens_to_sample` (int, optional): The maximum number of tokens to sample. Default is 256. +- `temperature` (float, optional): The temperature to use for the generation. Higher values result in more random outputs. +- `top_k` (int, optional): The number of top tokens to consider for the generation. +- `top_p` (float, optional): The cumulative probability of parameter highest probability vocabulary tokens to keep for nucleus sampling. +- `streaming` (bool, optional): Whether to use streaming mode. Default is False. +- `default_request_timeout` (int, optional): The default request timeout in seconds. Default is 600. + +##### Example + +``` +anthropic = Anthropic(model="claude-2", max_tokens_to_sample=100, temperature=0.8) +``` + +Copy code + +#### Generation + +``` +anthropic.generate(prompt, stop=None) +``` + +Copy code + +##### Parameters + +- `prompt` (str): The prompt to use for the generation. +- `stop` (list, optional): A list of stop sequences. The generation will stop if one of these sequences is encountered. + +##### Returns + +- `str`: The generated text. + +##### Example + +``` +prompt = "Once upon a time" +stop = ["The end"] +print(anthropic.generate(prompt, stop)) +``` + +Copy code + +### HuggingFaceLLM + +The `HuggingFaceLLM` class is a wrapper for the HuggingFace language models. + +#### Initialization + +``` +HuggingFaceLLM(model_id: str, device: str = None, max_length: int = 20, quantize: bool = False, quantization_config: dict = None) +``` + +Copy code + +##### Parameters + +- `model_id` (str): The ID of the model to use. +- `device` (str, optional): The device to use for the generation. Default is "cuda" if available, otherwise "cpu". +- `max_length` (int, optional): The maximum length of the generated text. Default is 20. +- `quantize` (bool, optional): Whether to quantize the model. Default is False. +- `quantization_config` (dict, optional): The configuration for the quantization. + +##### Example + +``` +huggingface = HuggingFaceLLM(model_id="gpt2", device="cpu", max_length=50) +``` + +Copy code + +#### Generation + +``` +huggingface.generate(prompt_text: str, max_length: int = None) +``` + +Copy code + +##### Parameters + +- `prompt_text` (str): The prompt to use for the generation. +- `max_length` (int, optional): The maximum length of the generated text. If not provided, the default value specified during initialization is used. + +##### Returns + +- `str`: The generated text. + +##### Example + +``` +prompt = "Once upon a time" +print(huggingface.generate(prompt)) +``` \ No newline at end of file diff --git a/images/Swarms.md b/images/Swarms.md new file mode 100644 index 00000000..afd306fe --- /dev/null +++ b/images/Swarms.md @@ -0,0 +1,2 @@ +# Agents +* Agents are the fundamental building blocks of a swarm, they are indivi \ No newline at end of file diff --git a/swarms/utils/main.py b/swarms/utils/main.py index 7b1dd6ba..704634b6 100644 --- a/swarms/utils/main.py +++ b/swarms/utils/main.py @@ -400,7 +400,7 @@ class FileHandler: #############===========================> -from swarms.agents.prompts.prompts import DATAFRAME_PROMPT +from swarms.agents.models.prompts.prompts import DATAFRAME_PROMPT import pandas as pd class CsvToDataframe(BaseHandler):