diff --git a/swarms/hivemind/__init__.py b/swarms/hivemind/__init__.py new file mode 100644 index 00000000..e69de29b diff --git a/swarms/swarms/hivemind.py b/swarms/hivemind/hivemind.py similarity index 99% rename from swarms/swarms/hivemind.py rename to swarms/hivemind/hivemind.py index c447a08d..a185c111 100644 --- a/swarms/swarms/hivemind.py +++ b/swarms/hivemind/hivemind.py @@ -1,16 +1,17 @@ # workers in unison #kye gomez jul 13 4:01pm, can scale up the number of swarms working on a probkem with `hivemind(swarms=4, or swarms=auto which will scale the agents depending on the complexity)` +#this needs to change, we need to specify exactly what needs to be imported +# add typechecking, documentation, and deeper error handling +# TODO: MANY WORKERS import concurrent.futures import logging -#this needs to change, we need to specify exactly what needs to be imported + from swarms.swarms.swarms import HierarchicalSwarm logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s') -# add typechecking, documentation, and deeper error handling -# TODO: MANY WORKERS class HiveMind: def __init__(self, openai_api_key="", num_swarms=1, max_workers=None): self.openai_api_key = openai_api_key diff --git a/swarms/workers/vortex_worker.py b/swarms/workers/vortex_worker.py new file mode 100644 index 00000000..61be7d3e --- /dev/null +++ b/swarms/workers/vortex_worker.py @@ -0,0 +1,127 @@ +#aug 10 +#Vortex is the name of my Duck friend, ILY Vortex +#Kye + +from swarms.agents.base import Agent + +import logging +import faiss +from typing import List, Optional, Union + +from langchain.agents import Tool +from langchain.chat_models import ChatOpenAI +from langchain.docstore import InMemoryDocstore +from langchain.embeddings import OpenAIEmbeddings + +from langchain.vectorstores import FAISS + +from swarms.agents.tools.autogpt import ( + FileChatMessageHistory, + ReadFileTool, + WebpageQATool, + WriteFileTool, + load_qa_with_sources_chain, + process_csv, + web_search, +) +from swarms.agents.base import Agent + +logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s') + +ROOT_DIR = "./data/" + +class VortexWorkerAgent: + """An autonomous agent instance that accomplishes various language tasks like summarization, text generation of any kind, data analysis, websearch and much more""" + + def __init__(self, + openai_api_key: str, + llm: Optional[Union[InMemoryDocstore, ChatOpenAI]] = None, + tools: Optional[List[Tool]] = None, + embedding_size: Optional[int] = 8192, + worker_name: Optional[str] = "Vortex Worker Agent", + worker_role: Optional[str] = "Assistant", + human_in_the_loop: Optional[bool] = False, + search_kwargs: dict = {}, + verbose: Optional[bool] = False, + chat_history_file: str = "chat_history.text"): + if not openai_api_key: + raise ValueError("openai_api_key cannot be None, try placing in ENV") + + self.openai_api_key = openai_api_key + self.worker_name = worker_name + self.worker_role = worker_role + + self.embedding_size = embedding_size + self.human_in_the_loop = human_in_the_loop + self.search_kwargs = search_kwargs + + self.verbose = verbose + self.chat_history_file = chat_history_file + self.llm = llm or self.init_llm(ChatOpenAI) + + self.tools = tools or self.init_tools() + self.vectorstore = self.init_vectorstore() + self.agent = self.create_agent() + + def init_llm(self, llm_class, temperature=1.0): + try: + return llm_class(openai_api_key=self.openai_api_key, temperature=temperature) + except Exception: + logging.error("Failed to init the language model, make sure the llm function matches the llm abstract type") + raise + + def init_tools(self): + try: + logging.info("Initializing tools for VortexWorkerAgent") + tools = [ + web_search, + WriteFileTool, + ReadFileTool, + process_csv, + WebpageQATool(qa_chain=load_qa_with_sources_chain(self.llm)) + ] + return tools + except Exception as error: + logging.error(f"Failed to initialize tools: {error}") + raise + + def init_vectorstore(self): + try: + embeddings_model = OpenAIEmbeddings(openai_api_key=self.openai_api_key) + index = faiss.IndexFlatL2(embedding_size=self.embedding_size) + return FAISS(embeddings_model, index, InMemoryDocstore({}), {}) + except Exception as error: + logging.error(f"Failed to initialize vector store: {error}") + raise + + def create_agent(self): + logging.info("Creating agent in VortexWorkerAgent") + try: + Agent.from_llm_and_tools( + ai_name=self.worker_name, + ai_role=self.worker_role, + tools=self.tools, + llm=self.llm, + memory=self.vectorstore, + human_in_the_loop=self.human_in_the_loop, + chat_history_memory=FileChatMessageHistory(self.chat_history_file) + ) + except Exception as error: + logging.error(f"Failed while creating agent {str(error)}") + raise error + + def add_tool(self, tool: Tool): + if not isinstance(tool, Tool): + logging.error("Tools must be an instant of Tool") + raise TypeError("Tool must be an instance of Tool, try wrapping your tool with the Tool decorator and fill in the requirements") + self.tools.append(tool) + + def run(self, prompt) -> str: + if not isinstance(prompt, str) or not prompt: + raise ValueError("Prompt must be a non empty string") + try: + self.agent.run([prompt]) + return "Task completed by VortexWorkerAgent" + except Exception as error: + logging.error(f"While running the agent: {str(error)}") + raise error \ No newline at end of file diff --git a/swarms/workers/worker_node.py b/swarms/workers/worker_node.py index c03ce54c..70b30c1b 100644 --- a/swarms/workers/worker_node.py +++ b/swarms/workers/worker_node.py @@ -8,7 +8,6 @@ from langchain.docstore import InMemoryDocstore from langchain.embeddings import OpenAIEmbeddings from langchain_experimental.autonomous_agents import AutoGPT from langchain.vectorstores import FAISS - from swarms.agents.tools.autogpt import ( FileChatMessageHistory, ReadFileTool, @@ -116,7 +115,7 @@ class WorkerNode: llm: Optional[Union[InMemoryDocstore, ChatOpenAI]] = None, tools: Optional[List[Tool]] = None, # vectorstore: Optional[FAISS] = None, - # embedding_size: Optional[int] = 4026, + embedding_size: Optional[int] = 4026, worker_name: Optional[str] = "Swarm Worker AI Assistant", worker_role: Optional[str] = "Assistant", human_in_the_loop: Optional[bool] = False, @@ -131,7 +130,7 @@ class WorkerNode: self.worker_node_initializer = WorkerNodeInitializer(openai_api_key) self.name = worker_name # Added a name attribute self.description = "A worker node that executes tasks" # Added a description attribute - self.embedding_size = embedding_size + self.embedding_size = self.embedding_size def initialize_llm(self, llm_class, temperature):