docs index.md better

pull/948/head^2
Kye Gomez 2 days ago
parent 9f59929844
commit 060aceced5

Binary file not shown.

After

Width:  |  Height:  |  Size: 175 KiB

@ -1,398 +1,305 @@
# Enterprise-Grade and Production Ready Agents
Swarms is an enterprise grade and production ready multi-agent collaboration framework that enables you to orchestrate many agents to work collaboratively at scale to automate real-world activities.
| **Feature** | **Description** | **Performance Impact** | **Documentation Link** |
|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------------------------------|
| Models | Pre-trained models that can be utilized for various tasks within the swarm framework. | ⭐⭐⭐ | [Documentation](https://docs.swarms.world/en/latest/swarms/models/) |
| Models APIs | APIs to interact with and utilize the models effectively, providing interfaces for inference, training, and fine-tuning. | ⭐⭐⭐ | [Documentation](https://docs.swarms.world/en/latest/swarms/models/) |
| Agents with Tools | Agents equipped with specialized tools to perform specific tasks more efficiently, such as data processing, analysis, or interaction with external systems. | ⭐⭐⭐⭐ | [Documentation](https://medium.com/@kyeg/the-swarms-tool-system-functions-pydantic-basemodels-as-tools-and-radical-customization-c2a2e227b8ca) |
| Agents with Memory | Mechanisms for agents to store and recall past interactions, improving learning and adaptability over time. | ⭐⭐⭐⭐ | [Documentation](https://github.com/kyegomez/swarms/blob/master/examples/structs/agent/agent_with_longterm_memory.py) |
| Multi-Agent Orchestration | Coordination of multiple agents to work together seamlessly on complex tasks, leveraging their individual strengths to achieve higher overall performance. | ⭐⭐⭐⭐⭐ | [Documentation](hierarchical_swarm.md) |
The performance impact is rated on a scale from one to five stars, with multi-agent orchestration being the highest due to its ability to combine the strengths of multiple agents and optimize task execution.
----
## Install 💻
`$ pip3 install -U swarms`
# Introduction to Multi-Agent Collaboration
---
# Usage Examples 🤖
## 🚀 Benefits of Multi-Agent Collaboration
### Google Collab Example
Run example in Collab: <a target="_blank" href="https://colab.research.google.com/github/kyegomez/swarms/blob/master/examples/collab/swarms_example.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
</a>
<div align="center">
<img src="/assets/img/benefits.png" alt="Benefits of Multi-Agent Collaboration" width="700"/>
<br/>
<em>Fig. 1: Key benefits and structure of multi-agent collaboration</em>
</div>
---
### Why Multi-Agent Architectures?
## `Agents`
A fully plug-and-play autonomous agent powered by an LLM extended by a long-term memory database, and equipped with function calling for tool usage! By passing in an LLM, you can create a fully autonomous agent with extreme customization and reliability, ready for real-world task automation!
Multi-agent systems unlock new levels of intelligence, reliability, and efficiency by enabling agents to work together. Here are the core benefits:
Features:
1. **Reduction of Hallucination**: Cross-verification between agents ensures more accurate, reliable outputs by reducing hallucination.
2. **Extended Memory**: Agents share knowledge and task history, achieving collective long-term memory for smarter, more adaptive responses.
3. **Specialization & Task Distribution**: Delegating tasks to specialized agents boosts efficiency and quality.
4. **Parallel Processing**: Multiple agents work simultaneously, greatly increasing speed and throughput.
5. **Scalability & Adaptability**: Systems can dynamically scale and adapt, maintaining efficiency as demands change.
✅ Any LLM / Any framework
---
✅ Extremely customize-able with max loops, autosaving, import docs (PDFS, TXT, CSVs, etc), tool usage, etc etc
## 🏗️ Multi-Agent Architectures For Production Deployments
✅ Long term memory database with RAG (ChromaDB, Pinecone, Qdrant)
`swarms` provides a variety of powerful, pre-built multi-agent architectures enabling you to orchestrate agents in various ways. Choose the right structure for your specific problem to build efficient and reliable production systems.
```python
from swarms import Agent
| **Architecture** | **Description** | **Best For** |
|---|---|---|
| **[SequentialWorkflow](https://docs.swarms.world/en/latest/swarms/structs/sequential_workflow/)** | Agents execute tasks in a linear chain; one agent's output is the next one's input. | Step-by-step processes like data transformation pipelines, report generation. |
| **[ConcurrentWorkflow](https://docs.swarms.world/en/latest/swarms/structs/concurrent_workflow/)** | Agents run tasks simultaneously for maximum efficiency. | High-throughput tasks like batch processing, parallel data analysis. |
| **[AgentRearrange](https://docs.swarms.world/en/latest/swarms/structs/agent_rearrange/)** | Dynamically maps complex relationships (e.g., `a -> b, c`) between agents. | Flexible and adaptive workflows, task distribution, dynamic routing. |
| **[GraphWorkflow](https://docs.swarms.world/en/latest/swarms/structs/graph_workflow/)** | Orchestrates agents as nodes in a Directed Acyclic Graph (DAG). | Complex projects with intricate dependencies, like software builds. |
| **[MixtureOfAgents (MoA)](https://docs.swarms.world/en/latest/swarms/structs/moa/)** | Utilizes multiple expert agents in parallel and synthesizes their outputs. | Complex problem-solving, achieving state-of-the-art performance through collaboration. |
| **[GroupChat](https://docs.swarms.world/en/latest/swarms/structs/group_chat/)** | Agents collaborate and make decisions through a conversational interface. | Real-time collaborative decision-making, negotiations, brainstorming. |
| **[ForestSwarm](https://docs.swarms.world/en/latest/swarms/structs/forest_swarm/)** | Dynamically selects the most suitable agent or tree of agents for a given task. | Task routing, optimizing for expertise, complex decision-making trees. |
| **[SpreadSheetSwarm](https://docs.swarms.world/en/latest/swarms/structs/spreadsheet_swarm/)** | Manages thousands of agents concurrently, tracking tasks and outputs in a structured format. | Massive-scale parallel operations, large-scale data generation and analysis. |
| **[SwarmRouter](https://docs.swarms.world/en/latest/swarms/structs/swarm_router/)** | Universal orchestrator that provides a single interface to run any type of swarm with dynamic selection. | Simplifying complex workflows, switching between swarm strategies, unified multi-agent management. |
| **[HierarchicalSwarm](https://docs.swarms.world/en/latest/swarms/structs/hierarchical_swarm/)** | Director agent coordinates specialized worker agents in a hierarchy. | Complex, multi-stage tasks, iterative refinement, enterprise workflows. |
| **[Hybrid Hierarchical-Cluster Swarm (HHCS)](https://docs.swarms.world/en/latest/swarms/structs/hhcs/)** | Router agent distributes tasks to specialized swarms for parallel, hierarchical processing. | Enterprise-scale, multi-domain, and highly complex workflows. |
## Initialize the workflow
agent = Agent(temperature=0.5, model_name="gpt-4o-mini", max_tokens=4000, max_loops=1, autosave=True, dashboard=True)
---
# Run the workflow on a task
agent.run("Generate a 10,000 word blog on health and wellness.")
```
### 🏢 HierarchicalSwarm Example
Hierarchical architectures enable structured, iterative, and scalable problem-solving by combining a director (or router) agent with specialized worker agents or swarms. Below are two key patterns:
### `Agent` + Long Term Memory
`Agent` equipped with quasi-infinite long term memory. Great for long document understanding, analysis, and retrieval.
```python
from swarms import Agent
from swarm_models import OpenAIChat
from swarms_memory import ChromaDB # Copy and paste the code and put it in your own local directory.
# Making an instance of the ChromaDB class
memory = ChromaDB(
metric="cosine",
n_results=3,
output_dir="results",
docs_folder="docs",
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
# Create specialized agents
research_agent = Agent(
agent_name="Research-Specialist",
agent_description="Expert in market research and analysis",
model_name="gpt-4o",
)
financial_agent = Agent(
agent_name="Financial-Analyst",
agent_description="Specialist in financial analysis and valuation",
model_name="gpt-4o",
)
# Initializing the agent with the Gemini instance and other parameters
agent = Agent(
agent_name="Covid-19-Chat",
agent_description=(
"This agent provides information about COVID-19 symptoms."
),
llm=OpenAIChat(),
max_loops="auto",
autosave=True,
# Initialize the hierarchical swarm
swarm = HierarchicalSwarm(
name="Financial-Analysis-Swarm",
description="A hierarchical swarm for comprehensive financial analysis",
agents=[research_agent, financial_agent],
max_loops=2,
verbose=True,
long_term_memory=memory,
stopping_condition="finish",
)
# Defining the task and image path
task = ("What are the symptoms of COVID-19?",)
# Running the agent with the specified task and image
out = agent.run(task)
print(out)
# Execute a complex task
result = swarm.run(task="Analyze the market potential for Tesla (TSLA) stock")
print(result)
```
[Full HierarchicalSwarm Documentation →](https://docs.swarms.world/en/latest/swarms/structs/hierarchical_swarm/)
### `Agent` ++ Long Term Memory ++ Tools!
An LLM equipped with long term memory and tools, a full stack agent capable of automating all and any digital tasks given a good prompt.
```python
from swarms import Agent, ChromaDB, OpenAIChat
# Making an instance of the ChromaDB class
memory = ChromaDB(
metric="cosine",
n_results=3,
output_dir="results",
docs_folder="docs",
)
# Initialize a tool
def search_api(query: str):
# Add your logic here
return query
# Initializing the agent with the Gemini instance and other parameters
agent = Agent(
agent_name="Covid-19-Chat",
agent_description=(
"This agent provides information about COVID-19 symptoms."
),
llm=OpenAIChat(),
max_loops="auto",
autosave=True,
verbose=True,
long_term_memory=memory,
stopping_condition="finish",
tools=[search_api],
)
# Defining the task and image path
task = ("What are the symptoms of COVID-19?",)
### SequentialWorkflow
# Running the agent with the specified task and image
out = agent.run(task)
print(out)
A `SequentialWorkflow` executes tasks in a strict order, forming a pipeline where each agent builds upon the work of the previous one. `SequentialWorkflow` is Ideal for processes that have clear, ordered steps. This ensures that tasks with dependencies are handled correctly.
```python
from swarms import Agent, SequentialWorkflow
# Initialize agents for a 3-step process
# 1. Generate an idea
idea_generator = Agent(agent_name="IdeaGenerator", system_prompt="Generate a unique startup idea.", model_name="gpt-4o-mini")
# 2. Validate the idea
validator = Agent(agent_name="Validator", system_prompt="Take this startup idea and analyze its market viability.", model_name="gpt-4o-mini")
# 3. Create a pitch
pitch_creator = Agent(agent_name="PitchCreator", system_prompt="Write a 3-sentence elevator pitch for this validated startup idea.", model_name="gpt-4o-mini")
# Create the sequential workflow
workflow = SequentialWorkflow(agents=[idea_generator, validator, pitch_creator])
# Run the workflow
elevator_pitch = workflow.run()
print(elevator_pitch)
```
### ConcurrentWorkflow (with `SpreadSheetSwarm`)
### Devin
Implementation of Devin in less than 90 lines of code with several tools:
terminal, browser, and edit files.
A concurrent workflow runs multiple agents simultaneously. `SpreadSheetSwarm` is a powerful implementation that can manage thousands of concurrent agents and log their outputs to a CSV file. Use this architecture for high-throughput tasks that can be performed in parallel, drastically reducing execution time.
```python
from swarms import Agent
from swarm_models import Anthropic
import subprocess
from swarms import Agent, SpreadSheetSwarm
# Model
llm = Anthropic(
temperature=0.1,
)
# Define a list of tasks (e.g., social media posts to generate)
platforms = ["Twitter", "LinkedIn", "Instagram"]
# Tools
def terminal(
code: str,
):
"""
Run code in the terminal.
Args:
code (str): The code to run in the terminal.
Returns:
str: The output of the code.
"""
out = subprocess.run(
code, shell=True, capture_output=True, text=True
).stdout
return str(out)
def browser(query: str):
"""
Search the query in the browser with the `browser` tool.
Args:
query (str): The query to search in the browser.
Returns:
str: The search results.
"""
import webbrowser
url = f"https://www.google.com/search?q={query}"
webbrowser.open(url)
return f"Searching for {query} in the browser."
def create_file(file_path: str, content: str):
"""
Create a file using the file editor tool.
Args:
file_path (str): The path to the file.
content (str): The content to write to the file.
Returns:
str: The result of the file creation operation.
"""
with open(file_path, "w") as file:
file.write(content)
return f"File {file_path} created successfully."
def file_editor(file_path: str, mode: str, content: str):
"""
Edit a file using the file editor tool.
Args:
file_path (str): The path to the file.
mode (str): The mode to open the file in.
content (str): The content to write to the file.
Returns:
str: The result of the file editing operation.
"""
with open(file_path, mode) as file:
file.write(content)
return f"File {file_path} edited successfully."
# Agent
agent = Agent(
agent_name="Devin",
system_prompt=(
"Autonomous agent that can interact with humans and other"
" agents. Be Helpful and Kind. Use the tools provided to"
" assist the user. Return all code in markdown format."
),
llm=llm,
max_loops="auto",
autosave=True,
dashboard=False,
streaming_on=True,
verbose=True,
stopping_token="<DONE>",
interactive=True,
tools=[terminal, browser, file_editor, create_file],
code_interpreter=True,
# streaming=True,
# Create an agent for each task
agents = [
Agent(
agent_name=f"{platform}-Marketer",
system_prompt=f"Generate a real estate marketing post for {platform}.",
model_name="gpt-4o-mini",
)
for platform in platforms
]
# Initialize the swarm to run these agents concurrently
swarm = SpreadSheetSwarm(
agents=agents,
autosave_on=True,
save_file_path="marketing_posts.csv",
)
# Run the agent
out = agent("Create a new file for a plan to take over the world.")
print(out)
# Run the swarm with a single, shared task description
property_description = "A beautiful 3-bedroom house in sunny California."
swarm.run(task=f"Generate a post about: {property_description}")
# Check marketing_posts.csv for the results!
```
### AgentRearrange
### `Agent`with Pydantic BaseModel as Output Type
The following is an example of an agent that intakes a pydantic basemodel and outputs it at the same time:
Inspired by `einsum`, `AgentRearrange` lets you define complex, non-linear relationships between agents using a simple string-based syntax. [Learn more](https://docs.swarms.world/en/latest/swarms/structs/agent_rearrange/). This architecture is Perfect for orchestrating dynamic workflows where agents might work in parallel, sequence, or a combination of both.
```python
from pydantic import BaseModel, Field
from swarms import Agent
from swarm_models import Anthropic
# Initialize the schema for the person's information
class Schema(BaseModel):
name: str = Field(..., title="Name of the person")
agent: int = Field(..., title="Age of the person")
is_student: bool = Field(..., title="Whether the person is a student")
courses: list[str] = Field(
..., title="List of courses the person is taking"
)
from swarms import Agent, AgentRearrange
# Define agents
researcher = Agent(agent_name="researcher", model_name="gpt-4o-mini")
writer = Agent(agent_name="writer", model_name="gpt-4o-mini")
editor = Agent(agent_name="editor", model_name="gpt-4o-mini")
# Convert the schema to a JSON string
tool_schema = Schema(
name="Tool Name",
agent=1,
is_student=True,
courses=["Course1", "Course2"],
)
# Define a flow: researcher sends work to both writer and editor simultaneously
# This is a one-to-many relationship
flow = "researcher -> writer, editor"
# Define the task to generate a person's information
task = "Generate a person's information based on the following schema:"
# Initialize the agent
agent = Agent(
agent_name="Person Information Generator",
system_prompt=(
"Generate a person's information based on the following schema:"
),
# Set the tool schema to the JSON string -- this is the key difference
tool_schema=tool_schema,
llm=Anthropic(),
max_loops=3,
autosave=True,
dashboard=False,
streaming_on=True,
verbose=True,
interactive=True,
# Set the output type to the tool schema which is a BaseModel
output_type=tool_schema, # or dict, or str
metadata_output_type="json",
# List of schemas that the agent can handle
list_base_models=[tool_schema],
function_calling_format_type="OpenAI",
function_calling_type="json", # or soon yaml
# Create the rearrangement system
rearrange_system = AgentRearrange(
agents=[researcher, writer, editor],
flow=flow,
)
# Run the agent to generate the person's information
generated_data = agent.run(task)
# Run the system
# The researcher will generate content, and then both the writer and editor
# will process that content in parallel.
outputs = rearrange_system.run("Analyze the impact of AI on modern cinema.")
print(outputs)
```
# Print the generated data
print(f"Generated data: {generated_data}")
---
### SwarmRouter: The Universal Swarm Orchestrator
```
The `SwarmRouter` simplifies building complex workflows by providing a single interface to run any type of swarm. Instead of importing and managing different swarm classes, you can dynamically select the one you need just by changing the `swarm_type` parameter. [Read the full documentation](https://docs.swarms.world/en/latest/swarms/structs/swarm_router/)
### Multi Modal Autonomous Agent
Run the agent with multiple modalities useful for various real-world tasks in manufacturing, logistics, and health.
This makes your code cleaner and more flexible, allowing you to switch between different multi-agent strategies with ease. Here's a complete example that shows how to define agents and then use `SwarmRouter` to execute the same task using different collaborative strategies.
```python
# Description: This is an example of how to use the Agent class to run a multi-modal workflow
import os
from swarms import Agent
from swarms.structs.swarm_router import SwarmRouter, SwarmType
# Define a few generic agents
writer = Agent(agent_name="Writer", system_prompt="You are a creative writer.", model_name="gpt-4o-mini")
editor = Agent(agent_name="Editor", system_prompt="You are an expert editor for stories.", model_name="gpt-4o-mini")
reviewer = Agent(agent_name="Reviewer", system_prompt="You are a final reviewer who gives a score.", model_name="gpt-4o-mini")
# The agents and task will be the same for all examples
agents = [writer, editor, reviewer]
task = "Write a short story about a robot who discovers music."
# --- Example 1: SequentialWorkflow ---
# Agents run one after another in a chain: Writer -> Editor -> Reviewer.
print("Running a Sequential Workflow...")
sequential_router = SwarmRouter(swarm_type=SwarmType.SequentialWorkflow, agents=agents)
sequential_output = sequential_router.run(task)
print(f"Final Sequential Output:\n{sequential_output}\n")
# --- Example 2: ConcurrentWorkflow ---
# All agents receive the same initial task and run at the same time.
print("Running a Concurrent Workflow...")
concurrent_router = SwarmRouter(swarm_type=SwarmType.ConcurrentWorkflow, agents=agents)
concurrent_outputs = concurrent_router.run(task)
# This returns a dictionary of each agent's output
for agent_name, output in concurrent_outputs.items():
print(f"Output from {agent_name}:\n{output}\n")
# --- Example 3: MixtureOfAgents ---
# All agents run in parallel, and a special 'aggregator' agent synthesizes their outputs.
print("Running a Mixture of Agents Workflow...")
aggregator = Agent(
agent_name="Aggregator",
system_prompt="Combine the story, edits, and review into a final document.",
model_name="gpt-4o-mini"
)
moa_router = SwarmRouter(
swarm_type=SwarmType.MixtureOfAgents,
agents=agents,
aggregator_agent=aggregator, # MoA requires an aggregator
)
aggregated_output = moa_router.run(task)
print(f"Final Aggregated Output:\n{aggregated_output}\n")
```
from dotenv import load_dotenv
from swarm_models.gpt4_vision_api import GPT4VisionAPI
from swarms.structs import Agent
The `SwarmRouter` is a powerful tool for simplifying multi-agent orchestration. It provides a consistent and flexible way to deploy different collaborative strategies, allowing you to build more sophisticated applications with less code.
# Load the environment variables
load_dotenv()
---
# Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY")
### MixtureOfAgents (MoA)
# Initialize the language model
llm = GPT4VisionAPI(
openai_api_key=api_key,
max_tokens=500,
)
The `MixtureOfAgents` architecture processes tasks by feeding them to multiple "expert" agents in parallel. Their diverse outputs are then synthesized by an aggregator agent to produce a final, high-quality result. [Learn more here](https://docs.swarms.world/en/latest/swarms/examples/moa_example/)
# Initialize the task
task = (
"Analyze this image of an assembly line and identify any issues such as"
" misaligned parts, defects, or deviations from the standard assembly"
" process. IF there is anything unsafe in the image, explain why it is"
" unsafe and how it could be improved."
```python
from swarms import Agent, MixtureOfAgents
# Define expert agents
financial_analyst = Agent(agent_name="FinancialAnalyst", system_prompt="Analyze financial data.", model_name="gpt-4o-mini")
market_analyst = Agent(agent_name="MarketAnalyst", system_prompt="Analyze market trends.", model_name="gpt-4o-mini")
risk_analyst = Agent(agent_name="RiskAnalyst", system_prompt="Analyze investment risks.", model_name="gpt-4o-mini")
# Define the aggregator agent
aggregator = Agent(
agent_name="InvestmentAdvisor",
system_prompt="Synthesize the financial, market, and risk analyses to provide a final investment recommendation.",
model_name="gpt-4o-mini"
)
img = "assembly_line.jpg"
## Initialize the workflow
agent = Agent(
llm=llm, max_loops="auto", autosave=True, dashboard=True, multi_modal=True
# Create the MoA swarm
moa_swarm = MixtureOfAgents(
agents=[financial_analyst, market_analyst, risk_analyst],
aggregator_agent=aggregator,
)
# Run the workflow on a task
agent.run(task=task, img=img)
# Run the swarm
recommendation = moa_swarm.run("Should we invest in NVIDIA stock right now?")
print(recommendation)
```
### `HierarchicalSwarm`
A sophisticated multi-agent orchestration system that implements a hierarchical workflow pattern with a director agent coordinating specialized worker agents.
---
### GroupChat
`GroupChat` creates a conversational environment where multiple agents can interact, discuss, and collaboratively solve a problem. You can define the speaking order or let it be determined dynamically. This architecture is ideal for tasks that benefit from debate and multi-perspective reasoning, such as contract negotiation, brainstorming, or complex decision-making.
```python
from swarms import Agent
from swarms.structs.hiearchical_swarm import HierarchicalSwarm
from swarms import Agent, GroupChat
# Create specialized agents
research_agent = Agent(
agent_name="Research-Specialist",
agent_description="Expert in market research and analysis",
model_name="gpt-4o",
)
# Define agents for a debate
tech_optimist = Agent(agent_name="TechOptimist", system_prompt="Argue for the benefits of AI in society.", model_name="gpt-4o-mini")
tech_critic = Agent(agent_name="TechCritic", system_prompt="Argue against the unchecked advancement of AI.", model_name="gpt-4o-mini")
financial_agent = Agent(
agent_name="Financial-Analyst",
agent_description="Specialist in financial analysis and valuation",
model_name="gpt-4o",
# Create the group chat
chat = GroupChat(
agents=[tech_optimist, tech_critic],
max_loops=4, # Limit the number of turns in the conversation
)
# Initialize the hierarchical swarm
swarm = HierarchicalSwarm(
name="Financial-Analysis-Swarm",
description="A hierarchical swarm for comprehensive financial analysis",
agents=[research_agent, financial_agent],
max_loops=2,
verbose=True,
# Run the chat with an initial topic
conversation_history = chat.run(
"Let's discuss the societal impact of artificial intelligence."
)
# Execute a complex task
task = "Analyze the market potential for Tesla (TSLA) stock"
result = swarm.run(task=task)
print(result)
# Print the full conversation
for message in conversation_history:
print(f"[{message['agent_name']}]: {message['content']}")
```
**Key Features:**
- **Hierarchical Coordination**: Director agent orchestrates all operations
- **Specialized Agents**: Each agent has specific expertise and responsibilities
- **Iterative Refinement**: Multiple feedback loops for improved results
- **Context Preservation**: Full conversation history maintained
- **Flexible Output Formats**: Support for various output types (dict, str, list)
--
## Connect With Us
**Core Methods:**
- `run(task)`: Execute the complete hierarchical workflow
- `step(task)`: Execute a single step of the workflow
- `batched_run(tasks)`: Process multiple tasks in batch
Join our community of agent engineers and researchers for technical support, cutting-edge updates, and exclusive access to world-class agent engineering insights!
For detailed documentation, see [Hierarchical Swarm Documentation](hierarchical_swarm.md).
----
| Platform | Description | Link |
|----------|-------------|------|
| 📚 Documentation | Official documentation and guides | [docs.swarms.world](https://docs.swarms.world) |
| 📝 Blog | Latest updates and technical articles | [Medium](https://medium.com/@kyeg) |
| 💬 Discord | Live chat and community support | [Join Discord](https://discord.gg/jM3Z6M9uMq) |
| 🐦 Twitter | Latest news and announcements | [@kyegomez](https://twitter.com/kyegomez) |
| 👥 LinkedIn | Professional network and updates | [The Swarm Corporation](https://www.linkedin.com/company/the-swarm-corporation) |
| 📺 YouTube | Tutorials and demos | [Swarms Channel](https://www.youtube.com/channel/UC9yXyitkbU_WSy7bd_41SqQ) |
| 🎫 Events | Join our community events | [Sign up here](https://lu.ma/5p2jnc2v) |
| 🚀 Onboarding Session | Get onboarded with Kye Gomez, creator and lead maintainer of Swarms | [Book Session](https://cal.com/swarms/swarms-onboarding-session) |
---

Loading…
Cancel
Save