diff --git a/swarms/structs/agent.py b/swarms/structs/agent.py index 2d07f106..737e7a65 100644 --- a/swarms/structs/agent.py +++ b/swarms/structs/agent.py @@ -781,6 +781,8 @@ class Agent: or loop_count < self.max_loops ): loop_count += 1 + # Log step start + current_step_id = f"step_{loop_count}_{uuid.uuid4().hex}" self.loop_count_print(loop_count, self.max_loops) print("\n") @@ -814,6 +816,8 @@ class Agent: *response_args, **kwargs ) + # Log step metadata + step_meta = self.log_step_metadata(loop_count, task_prompt, response) # Check if response is a dictionary and has 'choices' key if ( isinstance(response, dict) @@ -832,10 +836,18 @@ class Agent: # Check and execute tools if self.tools is not None: - print( - f"self.tools is not None: {response}" - ) - self.parse_and_execute_tools(response) + tool_result = self.parse_and_execute_tools(response) + if tool_result: + self.update_tool_usage( + step_meta["step_id"], + tool_result["tool"], + tool_result["args"], + tool_result["response"] + ) + + + # Update agent output history + self.agent_output.full_history = self.short_memory.return_history_as_string() # Log the step metadata logged = self.log_step_metadata( @@ -1969,13 +1981,27 @@ class Agent: def log_step_metadata( self, loop: int, task: str, response: str ) -> Step: - # # # Step Metadata + """Log metadata for each step of agent execution.""" + # Generate unique step ID + step_id = f"step_{loop}_{uuid.uuid4().hex}" + + # Calculate token usage # full_memory = self.short_memory.return_history_as_string() # prompt_tokens = self.tokenizer.count_tokens(full_memory) # completion_tokens = self.tokenizer.count_tokens(response) - # self.tokenizer.count_tokens(prompt_tokens + completion_tokens) - + # total_tokens = prompt_tokens + completion_tokens + total_tokens=self.tokenizer.count_tokens(task) + self.tokenizer.count_tokens(response), + + # Create memory usage tracking + memory_usage = { + "short_term": len(self.short_memory.messages), + "long_term": self.long_term_memory.count if hasattr(self, 'long_term_memory') else 0 + } + step_log = Step( + step_id=step_id, + time=time.time(), + tokens = total_tokens, response=AgentChatCompletionResponse( id=self.agent_id, agent_name=self.agent_name, @@ -1990,14 +2016,33 @@ class Agent: ), # usage=UsageInfo( # prompt_tokens=prompt_tokens, - # total_tokens=total_tokens, # completion_tokens=completion_tokens, + # total_tokens=total_tokens, # ), + tool_calls=[], + memory_usage=memory_usage ), ) - + + # Update total tokens if agent_output exists + if hasattr(self, 'agent_output'): + self.agent_output.total_tokens += step.response.total_tokens + + + # Add step to agent output tracking self.step_pool.append(step_log) + def update_tool_usage(self, step_id: str, tool_name: str, tool_args: dict, tool_response: Any): + """Update tool usage information for a specific step.""" + for step in self.agent_output.steps: + if step.step_id == step_id: + step.response.tool_calls.append({ + "tool": tool_name, + "arguments": tool_args, + "response": str(tool_response) + }) + break + def _serialize_callable( self, attr_value: Callable ) -> Dict[str, Any]: