Merge pull request #800 from ascender1729/feature/vllm-support
Add vLLM support with wrapper and examplepull/804/merge
commit
09159905b0
@ -0,0 +1,44 @@
|
||||
from swarms.utils.vllm_wrapper import VLLMWrapper
|
||||
|
||||
def main():
|
||||
# Initialize the vLLM wrapper with a model
|
||||
# Note: You'll need to have the model downloaded or specify a HuggingFace model ID
|
||||
llm = VLLMWrapper(
|
||||
model_name="meta-llama/Llama-2-7b-chat-hf", # Replace with your model path or HF model ID
|
||||
temperature=0.7,
|
||||
max_tokens=1000,
|
||||
)
|
||||
|
||||
# Example task
|
||||
task = "What are the benefits of using vLLM for inference?"
|
||||
|
||||
# Run inference
|
||||
response = llm.run(task)
|
||||
print("Response:", response)
|
||||
|
||||
# Example with system prompt
|
||||
llm_with_system = VLLMWrapper(
|
||||
model_name="meta-llama/Llama-2-7b-chat-hf", # Replace with your model path or HF model ID
|
||||
system_prompt="You are a helpful AI assistant that provides concise answers.",
|
||||
temperature=0.7,
|
||||
)
|
||||
|
||||
# Run inference with system prompt
|
||||
response = llm_with_system.run(task)
|
||||
print("\nResponse with system prompt:", response)
|
||||
|
||||
# Example with batched inference
|
||||
tasks = [
|
||||
"What is vLLM?",
|
||||
"How does vLLM improve inference speed?",
|
||||
"What are the main features of vLLM?"
|
||||
]
|
||||
|
||||
responses = llm.batched_run(tasks, batch_size=2)
|
||||
print("\nBatched responses:")
|
||||
for task, response in zip(tasks, responses):
|
||||
print(f"\nTask: {task}")
|
||||
print(f"Response: {response}")
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@ -0,0 +1,138 @@
|
||||
from typing import List, Optional, Dict, Any
|
||||
from loguru import logger
|
||||
|
||||
try:
|
||||
from vllm import LLM, SamplingParams
|
||||
except ImportError:
|
||||
import subprocess
|
||||
import sys
|
||||
print("Installing vllm")
|
||||
subprocess.check_call([sys.executable, "-m", "pip", "install", "-U", "vllm"])
|
||||
print("vllm installed")
|
||||
from vllm import LLM, SamplingParams
|
||||
|
||||
class VLLMWrapper:
|
||||
"""
|
||||
A wrapper class for vLLM that provides a similar interface to LiteLLM.
|
||||
This class handles model initialization and inference using vLLM.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str = "meta-llama/Llama-2-7b-chat-hf",
|
||||
system_prompt: Optional[str] = None,
|
||||
stream: bool = False,
|
||||
temperature: float = 0.5,
|
||||
max_tokens: int = 4000,
|
||||
max_completion_tokens: int = 4000,
|
||||
tools_list_dictionary: Optional[List[Dict[str, Any]]] = None,
|
||||
tool_choice: str = "auto",
|
||||
parallel_tool_calls: bool = False,
|
||||
*args,
|
||||
**kwargs,
|
||||
):
|
||||
"""
|
||||
Initialize the vLLM wrapper with the given parameters.
|
||||
|
||||
Args:
|
||||
model_name (str): The name of the model to use. Defaults to "meta-llama/Llama-2-7b-chat-hf".
|
||||
system_prompt (str, optional): The system prompt to use. Defaults to None.
|
||||
stream (bool): Whether to stream the output. Defaults to False.
|
||||
temperature (float): The temperature for sampling. Defaults to 0.5.
|
||||
max_tokens (int): The maximum number of tokens to generate. Defaults to 4000.
|
||||
max_completion_tokens (int): The maximum number of completion tokens. Defaults to 4000.
|
||||
tools_list_dictionary (List[Dict[str, Any]], optional): List of available tools. Defaults to None.
|
||||
tool_choice (str): How to choose tools. Defaults to "auto".
|
||||
parallel_tool_calls (bool): Whether to allow parallel tool calls. Defaults to False.
|
||||
"""
|
||||
self.model_name = model_name
|
||||
self.system_prompt = system_prompt
|
||||
self.stream = stream
|
||||
self.temperature = temperature
|
||||
self.max_tokens = max_tokens
|
||||
self.max_completion_tokens = max_completion_tokens
|
||||
self.tools_list_dictionary = tools_list_dictionary
|
||||
self.tool_choice = tool_choice
|
||||
self.parallel_tool_calls = parallel_tool_calls
|
||||
|
||||
# Initialize vLLM
|
||||
self.llm = LLM(model=model_name, **kwargs)
|
||||
self.sampling_params = SamplingParams(
|
||||
temperature=temperature,
|
||||
max_tokens=max_tokens,
|
||||
)
|
||||
|
||||
def _prepare_prompt(self, task: str) -> str:
|
||||
"""
|
||||
Prepare the prompt for the given task.
|
||||
|
||||
Args:
|
||||
task (str): The task to prepare the prompt for.
|
||||
|
||||
Returns:
|
||||
str: The prepared prompt.
|
||||
"""
|
||||
if self.system_prompt:
|
||||
return f"{self.system_prompt}\n\nUser: {task}\nAssistant:"
|
||||
return f"User: {task}\nAssistant:"
|
||||
|
||||
def run(self, task: str, *args, **kwargs) -> str:
|
||||
"""
|
||||
Run the model for the given task.
|
||||
|
||||
Args:
|
||||
task (str): The task to run the model for.
|
||||
*args: Additional positional arguments.
|
||||
**kwargs: Additional keyword arguments.
|
||||
|
||||
Returns:
|
||||
str: The model's response.
|
||||
"""
|
||||
try:
|
||||
prompt = self._prepare_prompt(task)
|
||||
|
||||
outputs = self.llm.generate(prompt, self.sampling_params)
|
||||
response = outputs[0].outputs[0].text.strip()
|
||||
|
||||
return response
|
||||
|
||||
except Exception as error:
|
||||
logger.error(f"Error in VLLMWrapper: {error}")
|
||||
raise error
|
||||
|
||||
def __call__(self, task: str, *args, **kwargs) -> str:
|
||||
"""
|
||||
Call the model for the given task.
|
||||
|
||||
Args:
|
||||
task (str): The task to run the model for.
|
||||
*args: Additional positional arguments.
|
||||
**kwargs: Additional keyword arguments.
|
||||
|
||||
Returns:
|
||||
str: The model's response.
|
||||
"""
|
||||
return self.run(task, *args, **kwargs)
|
||||
|
||||
def batched_run(self, tasks: List[str], batch_size: int = 10) -> List[str]:
|
||||
"""
|
||||
Run the model for multiple tasks in batches.
|
||||
|
||||
Args:
|
||||
tasks (List[str]): List of tasks to run.
|
||||
batch_size (int): Size of each batch. Defaults to 10.
|
||||
|
||||
Returns:
|
||||
List[str]: List of model responses.
|
||||
"""
|
||||
logger.info(f"Running tasks in batches of size {batch_size}. Total tasks: {len(tasks)}")
|
||||
results = []
|
||||
|
||||
for i in range(0, len(tasks), batch_size):
|
||||
batch = tasks[i:i + batch_size]
|
||||
for task in batch:
|
||||
logger.info(f"Running task: {task}")
|
||||
results.append(self.run(task))
|
||||
|
||||
logger.info("Completed all tasks.")
|
||||
return results
|
Loading…
Reference in new issue