diff --git a/docs/mkdocs.yml b/docs/mkdocs.yml index 65017cbc..dd407f5c 100644 --- a/docs/mkdocs.yml +++ b/docs/mkdocs.yml @@ -190,6 +190,7 @@ nav: - AutoSwarm: "swarms/structs/auto_swarm.md" - GroupChat: "swarms/structs/group_chat.md" - AgentRegistry: "swarms/structs/agent_registry.md" + - SpreadSheetSwarm: "swarms/structs/spreadsheet_swarm.md" # - Workflows: "swarms/structs/workflows.md" # - Workflows: # - BaseWorkflow: "swarms/structs/base_workflow.md" diff --git a/docs/swarms/structs/spreadsheet_swarm.md b/docs/swarms/structs/spreadsheet_swarm.md new file mode 100644 index 00000000..5f3f1130 --- /dev/null +++ b/docs/swarms/structs/spreadsheet_swarm.md @@ -0,0 +1,422 @@ +# SpreadSheetSwarm Documentation + +--- + +## Class Definition + +```python +class SpreadSheetSwarm: +``` + +## Full Path + +```python +from swarms.structs.spreadsheet_swarm import SpreadSheetSwarm +``` + +### Attributes + +The `SpreadSheetSwarm` class contains several attributes that define its behavior and configuration. These attributes are initialized in the constructor (`__init__` method) and are used throughout the class to manage the swarm's operations. + +| Attribute | Type | Description | +|--------------------|-----------------------------------|---------------------------------------------------------------------------------------------| +| `name` | `str` | The name of the swarm. | +| `description` | `str` | A description of the swarm's purpose. | +| `agents` | `Union[Agent, List[Agent]]` | The agents participating in the swarm. Can be a single agent or a list of agents. | +| `autosave_on` | `bool` | Flag indicating whether autosave is enabled. | +| `save_file_path` | `str` | The file path where the swarm data will be saved. | +| `task_queue` | `queue.Queue` | The queue that stores tasks to be processed by the agents. | +| `lock` | `threading.Lock` | A lock used for thread synchronization to prevent race conditions. | +| `metadata` | `SwarmRunMetadata` | Metadata for the swarm run, including start time, end time, tasks completed, and outputs. | +| `run_all_agents` | `bool` | Flag indicating whether to run all agents or just one. | +| `repeat_count` | `int` | The number of times to repeat the task. | +| `workspace_dir` | `str` | The directory where the workspace is located, retrieved from environment variables. | + +### Parameters + +- **`name`** (`str`, optional): The name of the swarm. Default is `"Spreadsheet-Swarm"`. +- **`description`** (`str`, optional): A brief description of the swarm. Default is `"A swarm that processes tasks from a queue using multiple agents on different threads."`. +- **`agents`** (`Union[Agent, List[Agent]]`, optional): The agents participating in the swarm. Default is an empty list. +- **`autosave_on`** (`bool`, optional): A flag to indicate if autosave is enabled. Default is `True`. +- **`save_file_path`** (`str`, optional): The file path where swarm data will be saved. Default is `"spreedsheet_swarm.csv"`. +- **`run_all_agents`** (`bool`, optional): Flag to determine if all agents should run. Default is `True`. +- **`repeat_count`** (`int`, optional): The number of times to repeat the task. Default is `1`. +- **`workspace_dir`** (`str`, optional): The directory where the workspace is located. Default is retrieved from environment variable `WORKSPACE_DIR`. + +### Constructor (`__init__`) + +The constructor initializes the `SpreadSheetSwarm` with the provided parameters. It sets up the task queue, locks for thread synchronization, and initializes the metadata. + +--- + +## Methods + +### `reliability_check` + +```python +def reliability_check(self): +``` + +#### Description + +The `reliability_check` method performs a series of checks to ensure that the swarm is properly configured before it begins processing tasks. It verifies that there are agents available and that a valid file path is provided for saving the swarm's data. If any of these checks fail, an exception is raised. + +#### Raises + +- **`ValueError`**: Raised if no agents are provided or if no save file path is specified. + +#### Example + +```python +swarm = SpreadSheetSwarm(agents=[agent1, agent2]) +swarm.reliability_check() +``` + +--- + +### `run` + +```python +def run(self, task: str, *args, **kwargs): +``` + +#### Description + +The `run` method starts the task processing using the swarm. Depending on the configuration, it can either run all agents or a specific subset of them. The method tracks the start and end times of the task, executes the task multiple times if specified, and logs the results. + +#### Parameters + +- **`task`** (`str`): The task to be executed by the swarm. +- **`*args`**: Additional positional arguments to pass to the agents. +- **`**kwargs`**: Additional keyword arguments to pass to the agents. + +#### Example + +```python +swarm = SpreadSheetSwarm(agents=[agent1, agent2]) +swarm.run("Process Data") +``` + +--- + +### `export_to_json` + +```python +def export_to_json(self): +``` + +#### Description + +The `export_to_json` method generates a JSON representation of the swarm's metadata. This can be useful for exporting the results to an external system or for logging purposes. + +#### Returns + +- **`str`**: The JSON representation of the swarm's metadata. + +#### Example + +```python +json_data = swarm.export_to_json() +print(json_data) +``` + +--- + +### `data_to_json_file` + +```python +def data_to_json_file(self): +``` + +#### Description + +The `data_to_json_file` method saves the swarm's metadata as a JSON file in the specified workspace directory. The file name is generated using the swarm's name and run ID. + +#### Example + +```python +swarm.data_to_json_file() +``` + +--- + +### `_track_output` + +```python +def _track_output(self, agent: Agent, task: str, result: str): +``` + +#### Description + +The `_track_output` method is used internally to record the results of tasks executed by the agents. It updates the metadata with the completed tasks and their results. + +#### Parameters + +- **`agent`** (`Agent`): The agent that executed the task. +- **`task`** (`str`): The task that was executed. +- **`result`** (`str`): The result of the task execution. + +#### Example + +```python +swarm._track_output(agent1, "Process Data", "Success") +``` + +--- + +### `_save_to_csv` + +```python +def _save_to_csv(self): +``` + +#### Description + +The `_save_to_csv` method saves the swarm's metadata to a CSV file. It logs each task and its result before writing them to the file. The file is saved in the location specified by `save_file_path`. + +#### Example + +```python +swarm._save_to_csv() +``` + +--- + +## Usage Examples + +### Example 1: Basic Swarm Initialization + +```python +import os + +from swarms import Agent, OpenAIChat +from swarms.prompts.finance_agent_sys_prompt import ( + FINANCIAL_AGENT_SYS_PROMPT, +) +from swarms.structs.spreadsheet_swarm import SpreadSheetSwarm + +# Example usage: +api_key = os.getenv("OPENAI_API_KEY") + +# Model +model = OpenAIChat( + openai_api_key=api_key, model_name="gpt-4o-mini", temperature=0.1 +) + + +# Initialize your agents (assuming the Agent class and model are already defined) +agents = [ + Agent( + agent_name=f"Financial-Analysis-Agent-spreesheet-swarm:{i}", + system_prompt=FINANCIAL_AGENT_SYS_PROMPT, + llm=model, + max_loops=1, + dynamic_temperature_enabled=True, + saved_state_path="finance_agent.json", + user_name="swarms_corp", + retry_attempts=1, + ) + for i in range(10) +] + +# Create a Swarm with the list of agents +swarm = SpreadSheetSwarm( + name="Finance-Spreadsheet-Swarm", + description="A swarm that processes tasks from a queue using multiple agents on different threads.", + agents=agents, + autosave_on=True, + save_file_path="financial_spreed_sheet_swarm_demo.csv", + run_all_agents=False, + repeat_count=1, +) + +# Run the swarm +swarm.run( + task="Analyze the states with the least taxes for LLCs. Provide an overview of all tax rates and add them with a comprehensive analysis" +) + +``` + +### Example 2: QR Code Generator + +```python +import os +from swarms import Agent, OpenAIChat +from swarms.structs.spreadsheet_swarm import SpreadSheetSwarm + +# Define custom system prompts for QR code generation +QR_CODE_AGENT_1_SYS_PROMPT = """ +You are a Python coding expert. Your task is to write a Python script to generate a QR code for the link: https://lu.ma/jjc1b2bo. The code should save the QR code as an image file. +""" + +QR_CODE_AGENT_2_SYS_PROMPT = """ +You are a Python coding expert. Your task is to write a Python script to generate a QR code for the link: https://github.com/The-Swarm-Corporation/Cookbook. The code should save the QR code as an image file. +""" + +# Example usage: +api_key = os.getenv("OPENAI_API_KEY") + +# Model +model = OpenAIChat( + openai_api_key=api_key, model_name="gpt-4o-mini", temperature=0.1 +) + +# Initialize your agents for QR code generation +agents = [ + Agent( + agent_name="QR-Code-Generator-Agent-Luma", + system_prompt=QR_CODE_AGENT_1_SYS_PROMPT, + llm=model, + max_loops=1, + dynamic_temperature_enabled=True, + saved_state_path="qr_code_agent_luma.json", + user_name="swarms_corp", + retry_attempts=1, + ), + Agent( + agent_name="QR-Code-Generator-Agent-Cookbook", + system_prompt=QR_CODE_AGENT_2_SYS_PROMPT, + llm=model, + max_loops=1, + dynamic_temperature_enabled=True, + saved_state_path="qr_code_agent_cookbook.json", + user_name="swarms_corp", + retry_attempts=1, + ), +] + +# Create a Swarm with the list of agents +swarm = SpreadSheetSwarm( + name="QR-Code-Generation-Swarm", + description="A swarm that generates Python scripts to create QR codes for specific links.", + agents=agents, + autosave_on=True, + save_file_path="qr_code_generation_results.csv", + run_all_agents=False, + repeat_count=1, +) + +# Run the swarm +swarm.run( + task="Generate Python scripts to create QR codes for the provided links and save them as image files." +) +``` + + +## Example 3: Social Media Marketing + +```python + +import os +from swarms import Agent, OpenAIChat +from swarms.structs.spreadsheet_swarm import SpreadSheetSwarm + +# Define custom system prompts for each social media platform +TWITTER_AGENT_SYS_PROMPT = """ +You are a Twitter marketing expert. Your task is to create engaging, concise tweets and analyze trends to maximize engagement. Consider hashtags, timing, and content relevance. +""" + +INSTAGRAM_AGENT_SYS_PROMPT = """ +You are an Instagram marketing expert. Your task is to create visually appealing and engaging content, including captions and hashtags, tailored to a specific audience. +""" + +FACEBOOK_AGENT_SYS_PROMPT = """ +You are a Facebook marketing expert. Your task is to craft posts that are optimized for engagement and reach on Facebook, including using images, links, and targeted messaging. +""" + +EMAIL_AGENT_SYS_PROMPT = """ +You are an Email marketing expert. Your task is to write compelling email campaigns that drive conversions, focusing on subject lines, personalization, and call-to-action strategies. +""" + +# Example usage: +api_key = os.getenv("OPENAI_API_KEY") + +# Model +model = OpenAIChat( + openai_api_key=api_key, model_name="gpt-4o-mini", temperature=0.1 +) + +# Initialize your agents for different social media platforms +agents = [ + Agent( + agent_name="Twitter-Marketing-Agent", + system_prompt=TWITTER_AGENT_SYS_PROMPT, + llm=model, + max_loops=1, + dynamic_temperature_enabled=True, + saved_state_path="twitter_agent.json", + user_name="swarms_corp", + retry_attempts=1, + ), + Agent( + agent_name="Instagram-Marketing-Agent", + system_prompt=INSTAGRAM_AGENT_SYS_PROMPT, + llm=model, + max_loops=1, + dynamic_temperature_enabled=True, + saved_state_path="instagram_agent.json", + user_name="swarms_corp", + retry_attempts=1, + ), + Agent( + agent_name="Facebook-Marketing-Agent", + system_prompt=FACEBOOK_AGENT_SYS_PROMPT, + llm=model, + max_loops=1, + dynamic_temperature_enabled=True, + saved_state_path="facebook_agent.json", + user_name="swarms_corp", + retry_attempts=1, + ), + Agent( + agent_name="Email-Marketing-Agent", + system_prompt=EMAIL_AGENT_SYS_PROMPT, + llm=model, + max_loops=1, + dynamic_temperature_enabled=True, + saved_state_path="email_agent.json", + user_name="swarms_corp", + retry_attempts=1, + ), +] + +# Create a Swarm with the list of agents +swarm = SpreadSheetSwarm( + name="Social-Media-Marketing-Swarm", + description="A swarm that processes social media marketing tasks using multiple agents on different threads.", + agents=agents, + autosave_on=True, + save_file_path="social_media_marketing_spreadsheet.csv", + run_all_agents=False, + repeat_count=2, +) + +# Run the swarm +swarm.run( + task="Create posts to promote hack nights in miami beach for developers, engineers, and tech enthusiasts. Include relevant hashtags, images, and engaging captions." +) +``` + +--- + +## Additional Information and Tips + +- **Thread Synchronization**: When working with multiple agents in a concurrent environment, it's crucial to ensure that access to shared resources is properly synchronized using locks to avoid race conditions. + +- **Autosave Feature**: If you enable the `autosave_on` flag, ensure that the file path provided is correct and writable. This feature is handy for long-running tasks where you want to periodically save the state. + +- **Error Handling** + +: Implementing proper error handling within your agents can prevent the swarm from crashing during execution. Consider catching exceptions in the `run` method and logging errors appropriately. + +- **Custom Agents**: You can extend the `Agent` class to create custom agents that perform specific tasks tailored to your application's needs. + +--- + +## References and Resources + +- [Python's `queue` module](https://docs.python.org/3/library/queue.html) +- [Python's `threading` module](https://docs.python.org/3/library/threading.html) +- [CSV File Handling in Python](https://docs.python.org/3/library/csv.html) +- [JSON Handling in Python](https://docs.python.org/3/library/json.html) +