parent
fe5c446ac2
commit
10028916ee
@ -1,18 +1,29 @@
|
||||
from swarms.models import HuggingfaceLLM
|
||||
import torch
|
||||
|
||||
# Initialize with custom configuration
|
||||
custom_config = {
|
||||
"quantize": True,
|
||||
"quantization_config": {"load_in_4bit": True},
|
||||
"verbose": True,
|
||||
}
|
||||
inference = HuggingfaceLLM(
|
||||
model_id="NousResearch/Nous-Hermes-2-Vision-Alpha", **custom_config
|
||||
)
|
||||
try:
|
||||
inference = HuggingfaceLLM(
|
||||
model_id="gpt2",
|
||||
quantize=False,
|
||||
verbose=True,
|
||||
)
|
||||
|
||||
# Generate text based on a prompt
|
||||
prompt_text = (
|
||||
"Create a list of known biggest risks of structural collapse with references"
|
||||
)
|
||||
generated_text = inference(prompt_text)
|
||||
print(generated_text)
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
inference.model.to(device)
|
||||
|
||||
prompt_text = "Create a list of known biggest risks of structural collapse with references"
|
||||
inputs = inference.tokenizer(prompt_text, return_tensors="pt").to(device)
|
||||
|
||||
generated_ids = inference.model.generate(
|
||||
**inputs,
|
||||
max_new_tokens=1000, # Adjust the length of the generation
|
||||
temperature=0.7, # Adjust creativity
|
||||
top_k=50, # Limits the vocabulary considered at each step
|
||||
pad_token_id=inference.tokenizer.eos_token_id,
|
||||
do_sample=True # Enable sampling to utilize temperature
|
||||
)
|
||||
|
||||
generated_text = inference.tokenizer.decode(generated_ids[0], skip_special_tokens=True)
|
||||
print(generated_text)
|
||||
except Exception as e:
|
||||
print(f"An error occurred: {e}")
|
||||
|
Loading…
Reference in new issue