From 1008c9352e3fba3a877be04e3c93bacda1c7a174 Mon Sep 17 00:00:00 2001 From: Kye Gomez Date: Mon, 16 Dec 2024 18:19:04 -0800 Subject: [PATCH] [6.6.8] --- forex_agents.py | 554 ------------------------------------------------ 1 file changed, 554 deletions(-) delete mode 100644 forex_agents.py diff --git a/forex_agents.py b/forex_agents.py deleted file mode 100644 index 1da5e896..00000000 --- a/forex_agents.py +++ /dev/null @@ -1,554 +0,0 @@ -from typing import Dict, List -from datetime import datetime -from loguru import logger -from swarms.structs.tree_swarm import TreeAgent, Tree, ForestSwarm -import asyncio -import json -import aiohttp -from bs4 import BeautifulSoup -import xml.etree.ElementTree as ET - -# Configure logging -logger.add("forex_forest.log", rotation="500 MB", level="INFO") - - -class ForexDataFeed: - """Real-time forex data collector using free open sources""" - - def __init__(self): - self.pairs = [ - "EUR/USD", - "GBP/USD", - "USD/JPY", - "AUD/USD", - "USD/CAD", - ] - - async def fetch_ecb_rates(self) -> Dict: - """Fetch exchange rates from European Central Bank (no key required)""" - try: - url = "https://www.ecb.europa.eu/stats/eurofxref/eurofxref-daily.xml" - async with aiohttp.ClientSession() as session: - async with session.get(url) as response: - xml_data = await response.text() - - root = ET.fromstring(xml_data) - rates = {} - for cube in root.findall(".//*[@currency]"): - currency = cube.get("currency") - rate = float(cube.get("rate")) - rates[currency] = rate - - # Calculate cross rates - rates["EUR"] = 1.0 # Base currency - cross_rates = {} - for pair in self.pairs: - base, quote = pair.split("/") - if base in rates and quote in rates: - cross_rates[pair] = rates[base] / rates[quote] - - return cross_rates - except Exception as e: - logger.error(f"Error fetching ECB rates: {e}") - return {} - - async def fetch_forex_factory_data(self) -> Dict: - """Scrape trading data from Forex Factory""" - try: - url = "https://www.forexfactory.com" - headers = { - "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" - } - - async with aiohttp.ClientSession() as session: - async with session.get( - url, headers=headers - ) as response: - text = await response.text() - - soup = BeautifulSoup(text, "html.parser") - - # Get calendar events - calendar = [] - calendar_table = soup.find( - "table", class_="calendar__table" - ) - if calendar_table: - for row in calendar_table.find_all( - "tr", class_="calendar__row" - ): - try: - event = { - "currency": row.find( - "td", class_="calendar__currency" - ).text.strip(), - "event": row.find( - "td", class_="calendar__event" - ).text.strip(), - "impact": row.find( - "td", class_="calendar__impact" - ).text.strip(), - "time": row.find( - "td", class_="calendar__time" - ).text.strip(), - } - calendar.append(event) - except: - continue - - return {"calendar": calendar} - except Exception as e: - logger.error(f"Error fetching Forex Factory data: {e}") - return {} - - async def fetch_tradingeconomics_data(self) -> Dict: - """Scrape economic data from Trading Economics""" - try: - url = "https://tradingeconomics.com/calendar" - headers = { - "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" - } - - async with aiohttp.ClientSession() as session: - async with session.get( - url, headers=headers - ) as response: - text = await response.text() - - soup = BeautifulSoup(text, "html.parser") - - # Get economic indicators - indicators = [] - calendar_table = soup.find("table", class_="table") - if calendar_table: - for row in calendar_table.find_all("tr")[ - 1: - ]: # Skip header - try: - cols = row.find_all("td") - indicator = { - "country": cols[0].text.strip(), - "indicator": cols[1].text.strip(), - "actual": cols[2].text.strip(), - "previous": cols[3].text.strip(), - "consensus": cols[4].text.strip(), - } - indicators.append(indicator) - except: - continue - - return {"indicators": indicators} - except Exception as e: - logger.error( - f"Error fetching Trading Economics data: {e}" - ) - return {} - - async def fetch_dailyfx_data(self) -> Dict: - """Scrape market analysis from DailyFX""" - try: - url = "https://www.dailyfx.com/market-news" - headers = { - "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36" - } - - async with aiohttp.ClientSession() as session: - async with session.get( - url, headers=headers - ) as response: - text = await response.text() - - soup = BeautifulSoup(text, "html.parser") - - # Get market news and analysis - news = [] - articles = soup.find_all("article", class_="dfx-article") - for article in articles[:10]: # Get latest 10 articles - try: - news_item = { - "title": article.find("h3").text.strip(), - "summary": article.find("p").text.strip(), - "currency": article.get( - "data-currency", "General" - ), - "timestamp": article.find("time").get( - "datetime" - ), - } - news.append(news_item) - except: - continue - - return {"news": news} - except Exception as e: - logger.error(f"Error fetching DailyFX data: {e}") - return {} - - async def fetch_all_data(self) -> Dict: - """Fetch and combine all forex data sources""" - try: - # Fetch data from all sources concurrently - rates, ff_data, te_data, dx_data = await asyncio.gather( - self.fetch_ecb_rates(), - self.fetch_forex_factory_data(), - self.fetch_tradingeconomics_data(), - self.fetch_dailyfx_data(), - ) - - # Combine all data - market_data = { - "exchange_rates": rates, - "calendar": ff_data.get("calendar", []), - "economic_indicators": te_data.get("indicators", []), - "market_news": dx_data.get("news", []), - "timestamp": datetime.now().isoformat(), - } - - return market_data - - except Exception as e: - logger.error(f"Error fetching all data: {e}") - return {} - - -# Rest of the ForexForestSystem class remains the same... - -# (Previous ForexDataFeed class code remains the same...) - -# Specialized Agent Prompts -TECHNICAL_ANALYST_PROMPT = """You are an expert forex technical analyst agent. -Your responsibilities: -1. Analyze real-time exchange rate data for patterns and trends -2. Calculate cross-rates and currency correlations -3. Generate trading signals based on price action -4. Monitor market volatility and momentum -5. Identify key support and resistance levels - -Data Format: -- You will receive exchange rates from ECB and calculated cross-rates -- Focus on major currency pairs and their relationships -- Consider market volatility and trading volumes - -Output Format: -{ - "analysis_type": "technical", - "timestamp": "ISO timestamp", - "signals": [ - { - "pair": "Currency pair", - "trend": "bullish/bearish/neutral", - "strength": 1-10, - "key_levels": {"support": [], "resistance": []}, - "recommendation": "buy/sell/hold" - } - ] -}""" - -FUNDAMENTAL_ANALYST_PROMPT = """You are an expert forex fundamental analyst agent. -Your responsibilities: -1. Analyze economic calendar events and their impact -2. Evaluate economic indicators from Trading Economics -3. Assess market news and sentiment from DailyFX -4. Monitor central bank actions and policies -5. Track geopolitical events affecting currencies - -Data Format: -- Economic calendar events with impact levels -- Latest economic indicators and previous values -- Market news and analysis from reliable sources -- Central bank statements and policy changes - -Output Format: -{ - "analysis_type": "fundamental", - "timestamp": "ISO timestamp", - "assessments": [ - { - "currency": "Currency code", - "economic_outlook": "positive/negative/neutral", - "key_events": [], - "impact_score": 1-10, - "bias": "bullish/bearish/neutral" - } - ] -}""" - -MARKET_SENTIMENT_PROMPT = """You are an expert market sentiment analysis agent. -Your responsibilities: -1. Analyze news sentiment from DailyFX articles -2. Track market positioning and bias -3. Monitor risk sentiment and market fear/greed -4. Identify potential market drivers -5. Detect sentiment shifts and extremes - -Data Format: -- Market news and analysis articles -- Trading sentiment indicators -- Risk event calendar -- Market commentary and analysis - -Output Format: -{ - "analysis_type": "sentiment", - "timestamp": "ISO timestamp", - "sentiment_data": [ - { - "pair": "Currency pair", - "sentiment": "risk-on/risk-off", - "strength": 1-10, - "key_drivers": [], - "outlook": "positive/negative/neutral" - } - ] -}""" - -STRATEGY_COORDINATOR_PROMPT = """You are the lead forex strategy coordination agent. -Your responsibilities: -1. Synthesize technical, fundamental, and sentiment analysis -2. Generate final trading recommendations -3. Manage risk exposure and position sizing -4. Coordinate entry and exit points -5. Monitor open positions and adjust strategies - -Data Format: -- Analysis from technical, fundamental, and sentiment agents -- Current market rates and conditions -- Economic calendar and news events -- Risk parameters and exposure limits - -Output Format: -{ - "analysis_type": "strategy", - "timestamp": "ISO timestamp", - "recommendations": [ - { - "pair": "Currency pair", - "action": "buy/sell/hold", - "confidence": 1-10, - "entry_points": [], - "stop_loss": float, - "take_profit": float, - "rationale": "string" - } - ] -}""" - - -class ForexForestSystem: - """Main system coordinating the forest swarm and data feeds""" - - def __init__(self): - """Initialize the forex forest system""" - self.data_feed = ForexDataFeed() - - # Create Technical Analysis Tree - technical_agents = [ - TreeAgent( - system_prompt=TECHNICAL_ANALYST_PROMPT, - agent_name="Price Action Analyst", - model_name="gpt-4o", - ), - TreeAgent( - system_prompt=TECHNICAL_ANALYST_PROMPT, - agent_name="Cross Rate Analyst", - model_name="gpt-4o", - ), - TreeAgent( - system_prompt=TECHNICAL_ANALYST_PROMPT, - agent_name="Volatility Analyst", - model_name="gpt-4o", - ), - ] - - # Create Fundamental Analysis Tree - fundamental_agents = [ - TreeAgent( - system_prompt=FUNDAMENTAL_ANALYST_PROMPT, - agent_name="Economic Data Analyst", - model_name="gpt-4o", - ), - TreeAgent( - system_prompt=FUNDAMENTAL_ANALYST_PROMPT, - agent_name="News Impact Analyst", - model_name="gpt-4o", - ), - TreeAgent( - system_prompt=FUNDAMENTAL_ANALYST_PROMPT, - agent_name="Central Bank Analyst", - model_name="gpt-4o", - ), - ] - - # Create Sentiment Analysis Tree - sentiment_agents = [ - TreeAgent( - system_prompt=MARKET_SENTIMENT_PROMPT, - agent_name="News Sentiment Analyst", - model_name="gpt-4o", - ), - TreeAgent( - system_prompt=MARKET_SENTIMENT_PROMPT, - agent_name="Risk Sentiment Analyst", - model_name="gpt-4o", - ), - TreeAgent( - system_prompt=MARKET_SENTIMENT_PROMPT, - agent_name="Market Positioning Analyst", - model_name="gpt-4o", - ), - ] - - # Create Strategy Coordination Tree - strategy_agents = [ - TreeAgent( - system_prompt=STRATEGY_COORDINATOR_PROMPT, - agent_name="Lead Strategy Coordinator", - model_name="gpt-4", - temperature=0.5, - ), - TreeAgent( - system_prompt=STRATEGY_COORDINATOR_PROMPT, - agent_name="Risk Manager", - model_name="gpt-4", - temperature=0.5, - ), - TreeAgent( - system_prompt=STRATEGY_COORDINATOR_PROMPT, - agent_name="Position Manager", - model_name="gpt-4", - temperature=0.5, - ), - ] - - # Create trees - self.technical_tree = Tree( - tree_name="Technical Analysis", agents=technical_agents - ) - self.fundamental_tree = Tree( - tree_name="Fundamental Analysis", - agents=fundamental_agents, - ) - self.sentiment_tree = Tree( - tree_name="Sentiment Analysis", agents=sentiment_agents - ) - self.strategy_tree = Tree( - tree_name="Strategy Coordination", agents=strategy_agents - ) - - # Create forest swarm - self.forest = ForestSwarm( - trees=[ - self.technical_tree, - self.fundamental_tree, - self.sentiment_tree, - self.strategy_tree, - ] - ) - - logger.info("Forex Forest System initialized successfully") - - async def prepare_analysis_task(self) -> str: - """Prepare the analysis task with real-time data""" - try: - market_data = await self.data_feed.fetch_all_data() - - task = { - "action": "analyze_forex_markets", - "market_data": market_data, - "timestamp": datetime.now().isoformat(), - "analysis_required": [ - "technical", - "fundamental", - "sentiment", - "strategy", - ], - } - - return json.dumps(task, indent=2) - - except Exception as e: - logger.error(f"Error preparing analysis task: {e}") - raise - - async def run_analysis_cycle(self) -> Dict: - """Run a complete analysis cycle with the forest swarm""" - try: - # Prepare task with real-time data - task = await self.prepare_analysis_task() - - # Run forest swarm analysis - result = self.forest.run(task) - - # Parse and validate results - analysis = ( - json.loads(result) - if isinstance(result, str) - else result - ) - - logger.info("Analysis cycle completed successfully") - return analysis - - except Exception as e: - logger.error(f"Error in analysis cycle: {e}") - raise - - async def monitor_markets(self, interval_seconds: int = 300): - """Continuously monitor markets and run analysis""" - while True: - try: - # Run analysis cycle - analysis = await self.run_analysis_cycle() - - # Log results - logger.info("Market analysis completed") - logger.debug( - f"Analysis results: {json.dumps(analysis, indent=2)}" - ) - - # Process any trading signals - if "recommendations" in analysis: - await self.process_trading_signals( - analysis["recommendations"] - ) - - # Wait for next interval - await asyncio.sleep(interval_seconds) - - except Exception as e: - logger.error(f"Error in market monitoring: {e}") - await asyncio.sleep(60) - - async def process_trading_signals( - self, recommendations: List[Dict] - ): - """Process and log trading signals from analysis""" - try: - for rec in recommendations: - logger.info( - f"Trading Signal: {rec['pair']} - {rec['action']}" - ) - logger.info(f"Confidence: {rec['confidence']}/10") - logger.info(f"Entry Points: {rec['entry_points']}") - logger.info(f"Stop Loss: {rec['stop_loss']}") - logger.info(f"Take Profit: {rec['take_profit']}") - logger.info(f"Rationale: {rec['rationale']}") - logger.info("-" * 50) - - except Exception as e: - logger.error(f"Error processing trading signals: {e}") - - -# Example usage -async def main(): - """Main function to run the Forex Forest System""" - try: - system = ForexForestSystem() - await system.monitor_markets() - except Exception as e: - logger.error(f"Error in main: {e}") - - -if __name__ == "__main__": - # Set up asyncio event loop and run the system - asyncio.run(main())