parent
b1598aa71a
commit
10829b03e2
@ -1,310 +0,0 @@
|
||||
from typing import Callable, Union
|
||||
|
||||
import torch
|
||||
from torch import Tensor, nn
|
||||
from torch.distributed._tensor import (
|
||||
DeviceMesh,
|
||||
DTensor,
|
||||
Replicate,
|
||||
Shard,
|
||||
distribute_tensor,
|
||||
)
|
||||
from zeta.nn import QuantizedLN
|
||||
|
||||
try:
|
||||
from peft.tuners.lora import Linear as LoRALinear
|
||||
except ImportError:
|
||||
|
||||
class LoRALinear:
|
||||
pass
|
||||
|
||||
|
||||
def try_to_local(tensor: Union[Tensor, DTensor]):
|
||||
"""Try to convert DTensor to Tensor.
|
||||
|
||||
Args:
|
||||
tensor (Tensor|DTensor): Tensor to convert.
|
||||
"""
|
||||
if isinstance(tensor, DTensor):
|
||||
tensor = tensor.to_local()
|
||||
return tensor
|
||||
|
||||
|
||||
def module_to_local(module: nn.Module):
|
||||
"""convert all DTensor parameters to Tensor parameters in module.
|
||||
|
||||
Args:
|
||||
module (Module): Module to convert.
|
||||
"""
|
||||
for name, mod in module.named_children():
|
||||
module_to_local(mod)
|
||||
|
||||
for name, param in module.named_parameters(recurse=False):
|
||||
module.register_parameter(
|
||||
name, nn.Parameter(try_to_local(param))
|
||||
)
|
||||
|
||||
for name, buf in module.named_buffers(recurse=False):
|
||||
module.register_buffer(name, try_to_local(buf))
|
||||
|
||||
|
||||
def rowwise_parallelize_linear(
|
||||
module: nn.Module, device_mesh: DeviceMesh, to_local: bool = False
|
||||
) -> None:
|
||||
"""
|
||||
This function parallelizes the input :class:`nn.Linear` module in
|
||||
:class:`RowwiseParallel` style.
|
||||
|
||||
Args:
|
||||
module (:class:`nn.Module`):
|
||||
The :class:`nn.Linear` module to be parallelized.
|
||||
device_mesh (:class:`DeviceMesh`):
|
||||
Object which describes the mesh topology of devices.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
for name, param in module.named_parameters():
|
||||
dist_spec = (
|
||||
[Shard(1)] if name == "weight" else [Replicate()] # type: ignore[list-item]
|
||||
)
|
||||
|
||||
dist_tensor = distribute_tensor(param, device_mesh, dist_spec)
|
||||
if to_local:
|
||||
dist_tensor = try_to_local(dist_tensor)
|
||||
if name == "bias":
|
||||
# rowwise linear would add bias more than ones.
|
||||
dist_tensor /= device_mesh.size()
|
||||
dist_param = torch.nn.Parameter(dist_tensor)
|
||||
module.register_parameter(name, dist_param)
|
||||
|
||||
# Weight, bias and scale are registered as buffer in QLinear
|
||||
for name, buffer in module.named_buffers():
|
||||
dist_spec = (
|
||||
[Shard(1)] if name == "weight" else [Replicate()] # type: ignore[list-item]
|
||||
)
|
||||
|
||||
dist_tensor = distribute_tensor(
|
||||
buffer, device_mesh, dist_spec
|
||||
)
|
||||
if to_local:
|
||||
dist_tensor = try_to_local(dist_tensor)
|
||||
if name == "bias":
|
||||
# rowwise linear would add bias more than ones.
|
||||
dist_tensor /= device_mesh.size()
|
||||
module.register_buffer(name, dist_tensor)
|
||||
|
||||
dist_tensor = distribute_tensor(
|
||||
buffer, device_mesh, dist_spec
|
||||
)
|
||||
if to_local:
|
||||
dist_tensor = try_to_local(dist_tensor)
|
||||
module.register_buffer(name, dist_tensor)
|
||||
|
||||
|
||||
def rowwise_parallelize_loralinear(
|
||||
module: LoRALinear,
|
||||
device_mesh: DeviceMesh,
|
||||
to_local: bool = False,
|
||||
) -> None:
|
||||
"""rowwize parallelize lora linear.
|
||||
|
||||
Read S-LoRA for more detail.
|
||||
"""
|
||||
rowwise_parallelize_linear(
|
||||
module.base_layer, device_mesh=device_mesh, to_local=to_local
|
||||
)
|
||||
for mod in module.lora_A.values():
|
||||
rowwise_parallelize_linear(
|
||||
mod, device_mesh=device_mesh, to_local=to_local
|
||||
)
|
||||
for mod in module.lora_B.values():
|
||||
colwise_parallelize_linear(
|
||||
mod, device_mesh=device_mesh, to_local=to_local
|
||||
)
|
||||
module._tp_mode = "rowwise"
|
||||
|
||||
|
||||
def rowwise_parallelize_linear_fn(
|
||||
module: nn.Module, device_mesh: DeviceMesh, to_local: bool = False
|
||||
) -> None:
|
||||
"""
|
||||
This function parallelizes the input :Linear module in
|
||||
:class:`RowwiseParallel` style.
|
||||
|
||||
Args:
|
||||
module (:class:`nn.Module`):
|
||||
The :class:`nn.Linear` module to be parallelized.
|
||||
device_mesh (:class:`DeviceMesh`):
|
||||
Object which describes the mesh topology of devices.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
if isinstance(module, (torch.nn.Linear, QuantizedLN)):
|
||||
return rowwise_parallelize_linear(
|
||||
module, device_mesh=device_mesh, to_local=to_local
|
||||
)
|
||||
elif isinstance(module, LoRALinear):
|
||||
return rowwise_parallelize_loralinear(
|
||||
module, device_mesh=device_mesh, to_local=to_local
|
||||
)
|
||||
else:
|
||||
raise TypeError(f"Unsupported module: {type(module)}")
|
||||
|
||||
|
||||
def colwise_parallelize_linear(
|
||||
module: nn.Module, device_mesh: DeviceMesh, to_local: bool = False
|
||||
) -> None:
|
||||
"""
|
||||
This function parallelizes the input :class:`nn.Linear` module in
|
||||
:class:`ColwiseParallel` style.
|
||||
|
||||
Args:
|
||||
module (:class:`nn.Module`):
|
||||
The :class:`nn.Linear` module to be parallelized.
|
||||
device_mesh (:class:`DeviceMesh`):
|
||||
Object which describes the mesh topology of devices.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
|
||||
for name, param in module.named_parameters():
|
||||
dist_tensor = distribute_tensor(
|
||||
param, device_mesh, [Shard(0)]
|
||||
)
|
||||
if to_local:
|
||||
dist_tensor = try_to_local(dist_tensor)
|
||||
dist_param = torch.nn.Parameter(dist_tensor)
|
||||
module.register_parameter(name, dist_param)
|
||||
# Weight, bias and scale are registered as buffer in QLinear
|
||||
for name, buffer in module.named_buffers():
|
||||
dist_tensor = distribute_tensor(
|
||||
buffer, device_mesh, [Shard(0)]
|
||||
)
|
||||
if to_local:
|
||||
dist_tensor = try_to_local(dist_tensor)
|
||||
module.register_buffer(name, dist_tensor)
|
||||
|
||||
|
||||
def colwise_parallelize_loralinear(
|
||||
module: nn.Module, device_mesh: DeviceMesh, to_local: bool = False
|
||||
) -> None:
|
||||
"""colwise parallelize lora linear."""
|
||||
colwise_parallelize_linear(
|
||||
module.base_layer, device_mesh=device_mesh, to_local=to_local
|
||||
)
|
||||
for mod in module.lora_A.values():
|
||||
colwise_parallelize_linear(
|
||||
mod, device_mesh=device_mesh, to_local=to_local
|
||||
)
|
||||
for mod in module.lora_B.values():
|
||||
colwise_parallelize_linear(
|
||||
mod, device_mesh=device_mesh, to_local=to_local
|
||||
)
|
||||
module._tp_mode = "colwise"
|
||||
|
||||
|
||||
def colwise_parallelize_linear_fn(
|
||||
module: nn.Module, device_mesh: DeviceMesh, to_local: bool = False
|
||||
) -> None:
|
||||
"""
|
||||
This function parallelizes the input :Linear module in
|
||||
:class:`ColwiseParallel` style.
|
||||
|
||||
Args:
|
||||
module (:class:`nn.Module`):
|
||||
The :class:`nn.Linear` module to be parallelized.
|
||||
device_mesh (:class:`DeviceMesh`):
|
||||
Object which describes the mesh topology of devices.
|
||||
|
||||
Returns:
|
||||
None
|
||||
"""
|
||||
if isinstance(module, (torch.nn.Linear, QuantizedLN)):
|
||||
return colwise_parallelize_linear(
|
||||
module, device_mesh=device_mesh, to_local=to_local
|
||||
)
|
||||
elif isinstance(module, LoRALinear):
|
||||
return colwise_parallelize_loralinear(
|
||||
module, device_mesh=device_mesh, to_local=to_local
|
||||
)
|
||||
else:
|
||||
raise TypeError(f"Unsupported module: {type(module)}")
|
||||
|
||||
|
||||
def _partition_module(
|
||||
mod_name: str,
|
||||
prefix: str,
|
||||
module: nn.Module,
|
||||
device_mesh: DeviceMesh,
|
||||
func: Callable,
|
||||
):
|
||||
"""partition module.
|
||||
|
||||
Parameters in module won't be force Replicated.
|
||||
|
||||
Args:
|
||||
mod_name (str): module name.
|
||||
prefix (str): Parameter prefix.
|
||||
module (Module): Module to be partitioned.
|
||||
device_mesh (DeviceMesh): The device mesh.
|
||||
func (Callable): partition callback
|
||||
"""
|
||||
for name, mod in module.named_children():
|
||||
child_name = f"{prefix}{name}"
|
||||
_partition_module(
|
||||
child_name,
|
||||
child_name + ".",
|
||||
module=mod,
|
||||
device_mesh=device_mesh,
|
||||
func=func,
|
||||
)
|
||||
|
||||
func(mod_name, module, device_mesh)
|
||||
|
||||
|
||||
def partition_module(
|
||||
module: nn.Module,
|
||||
device_mesh: DeviceMesh,
|
||||
func: Callable,
|
||||
to_local: bool = False,
|
||||
):
|
||||
"""partition module.
|
||||
|
||||
Parameters in module won't be force Replicated.
|
||||
|
||||
Args:
|
||||
module (Module): Module to be partitioned.
|
||||
device_mesh (DeviceMesh): The device mesh.
|
||||
func (Callable): partition callback.
|
||||
to_local (bool): Convert all DTensor parameters to Tensor parameters.
|
||||
"""
|
||||
_partition_module(
|
||||
"", "", module=module, device_mesh=device_mesh, func=func
|
||||
)
|
||||
|
||||
if to_local:
|
||||
module_to_local(module)
|
||||
|
||||
|
||||
def replicate_module(model: nn.Module, device_mesh: DeviceMesh):
|
||||
"""Replicate all parameters in module.
|
||||
|
||||
Args:
|
||||
model (Module): Module to perform replicate.
|
||||
device_mesh (DeviceMesh): The distribution device mesh.
|
||||
"""
|
||||
for name, param in model.named_parameters(recurse=False):
|
||||
param = distribute_tensor(
|
||||
param, device_mesh=device_mesh, placements=[Replicate()]
|
||||
).to_local()
|
||||
param = nn.Parameter(param)
|
||||
model.register_parameter(name, param)
|
||||
|
||||
for name, buf in model.named_buffers(recurse=False):
|
||||
buf = distribute_tensor(
|
||||
buf, device_mesh=device_mesh, placements=[Replicate()]
|
||||
).to_local()
|
||||
model.register_buffer(name, buf)
|
@ -1,10 +1,21 @@
|
||||
from loguru import logger
|
||||
|
||||
logger.add(
|
||||
"MessagePool.log",
|
||||
"swarms.log",
|
||||
level="INFO",
|
||||
colorize=True,
|
||||
format="<green>{time}</green> <level>{message}</level>",
|
||||
backtrace=True,
|
||||
diagnose=True,
|
||||
)
|
||||
|
||||
def loguru_logger(file_path: str = "swarms.log"):
|
||||
return logger.add(
|
||||
file_path,
|
||||
level="INFO",
|
||||
colorize=True,
|
||||
format="<green>{time}</green> <level>{message}</level>",
|
||||
backtrace=True,
|
||||
diagnose=True,
|
||||
)
|
||||
|
||||
|
@ -1,259 +0,0 @@
|
||||
from enum import Enum
|
||||
|
||||
import cv2
|
||||
import numpy as np
|
||||
import supervision as sv
|
||||
|
||||
|
||||
class FeatureType(Enum):
|
||||
"""
|
||||
An enumeration to represent the types of features for mask adjustment in image
|
||||
segmentation.
|
||||
"""
|
||||
|
||||
ISLAND = "ISLAND"
|
||||
HOLE = "HOLE"
|
||||
|
||||
@classmethod
|
||||
def list(cls):
|
||||
return list(map(lambda c: c.value, cls))
|
||||
|
||||
|
||||
def compute_mask_iou_vectorized(masks: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Vectorized computation of the Intersection over Union (IoU) for all pairs of masks.
|
||||
|
||||
Parameters:
|
||||
masks (np.ndarray): A 3D numpy array with shape `(N, H, W)`, where `N` is the
|
||||
number of masks, `H` is the height, and `W` is the width.
|
||||
|
||||
Returns:
|
||||
np.ndarray: A 2D numpy array of shape `(N, N)` where each element `[i, j]` is
|
||||
the IoU between masks `i` and `j`.
|
||||
|
||||
Raises:
|
||||
ValueError: If any of the masks is found to be empty.
|
||||
"""
|
||||
if np.any(masks.sum(axis=(1, 2)) == 0):
|
||||
raise ValueError(
|
||||
"One or more masks are empty. Please filter out empty"
|
||||
" masks before using `compute_iou_vectorized` function."
|
||||
)
|
||||
|
||||
masks_bool = masks.astype(bool)
|
||||
masks_flat = masks_bool.reshape(masks.shape[0], -1)
|
||||
intersection = np.logical_and(
|
||||
masks_flat[:, None], masks_flat[None, :]
|
||||
).sum(axis=2)
|
||||
union = np.logical_or(
|
||||
masks_flat[:, None], masks_flat[None, :]
|
||||
).sum(axis=2)
|
||||
iou_matrix = intersection / union
|
||||
return iou_matrix
|
||||
|
||||
|
||||
def mask_non_max_suppression(
|
||||
masks: np.ndarray, iou_threshold: float = 0.6
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Performs Non-Max Suppression on a set of masks by prioritizing larger masks and
|
||||
removing smaller masks that overlap significantly.
|
||||
|
||||
When the IoU between two masks exceeds the specified threshold, the smaller mask
|
||||
(in terms of area) is discarded. This process is repeated for each pair of masks,
|
||||
effectively filtering out masks that are significantly overlapped by larger ones.
|
||||
|
||||
Parameters:
|
||||
masks (np.ndarray): A 3D numpy array with shape `(N, H, W)`, where `N` is the
|
||||
number of masks, `H` is the height, and `W` is the width.
|
||||
iou_threshold (float): The IoU threshold for determining significant overlap.
|
||||
|
||||
Returns:
|
||||
np.ndarray: A 3D numpy array of filtered masks.
|
||||
"""
|
||||
num_masks = masks.shape[0]
|
||||
areas = masks.sum(axis=(1, 2))
|
||||
sorted_idx = np.argsort(-areas)
|
||||
keep_mask = np.ones(num_masks, dtype=bool)
|
||||
iou_matrix = compute_mask_iou_vectorized(masks)
|
||||
for i in range(num_masks):
|
||||
if not keep_mask[sorted_idx[i]]:
|
||||
continue
|
||||
|
||||
overlapping_masks = iou_matrix[sorted_idx[i]] > iou_threshold
|
||||
overlapping_masks[sorted_idx[i]] = False
|
||||
overlapping_indices = np.where(overlapping_masks)[0]
|
||||
keep_mask[sorted_idx[overlapping_indices]] = False
|
||||
|
||||
return masks[keep_mask]
|
||||
|
||||
|
||||
def filter_masks_by_relative_area(
|
||||
masks: np.ndarray,
|
||||
minimum_area: float = 0.01,
|
||||
maximum_area: float = 1.0,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Filters masks based on their relative area within the total area of each mask.
|
||||
|
||||
Parameters:
|
||||
masks (np.ndarray): A 3D numpy array with shape `(N, H, W)`, where `N` is the
|
||||
number of masks, `H` is the height, and `W` is the width.
|
||||
minimum_area (float): The minimum relative area threshold. Must be between `0`
|
||||
and `1`.
|
||||
maximum_area (float): The maximum relative area threshold. Must be between `0`
|
||||
and `1`.
|
||||
|
||||
Returns:
|
||||
np.ndarray: A 3D numpy array containing masks that fall within the specified
|
||||
relative area range.
|
||||
|
||||
Raises:
|
||||
ValueError: If `minimum_area` or `maximum_area` are outside the `0` to `1`
|
||||
range, or if `minimum_area` is greater than `maximum_area`.
|
||||
"""
|
||||
|
||||
if not (isinstance(masks, np.ndarray) and masks.ndim == 3):
|
||||
raise ValueError("Input must be a 3D numpy array.")
|
||||
|
||||
if not (0 <= minimum_area <= 1) or not (0 <= maximum_area <= 1):
|
||||
raise ValueError(
|
||||
"`minimum_area` and `maximum_area` must be between 0"
|
||||
" and 1."
|
||||
)
|
||||
|
||||
if minimum_area > maximum_area:
|
||||
raise ValueError(
|
||||
"`minimum_area` must be less than or equal to"
|
||||
" `maximum_area`."
|
||||
)
|
||||
|
||||
total_area = masks.shape[1] * masks.shape[2]
|
||||
relative_areas = masks.sum(axis=(1, 2)) / total_area
|
||||
return masks[
|
||||
(relative_areas >= minimum_area)
|
||||
& (relative_areas <= maximum_area)
|
||||
]
|
||||
|
||||
|
||||
def adjust_mask_features_by_relative_area(
|
||||
mask: np.ndarray,
|
||||
area_threshold: float,
|
||||
feature_type: FeatureType = FeatureType.ISLAND,
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Adjusts a mask by removing small islands or filling small holes based on a relative
|
||||
area threshold.
|
||||
|
||||
!!! warning
|
||||
|
||||
Running this function on a mask with small islands may result in empty masks.
|
||||
|
||||
Parameters:
|
||||
mask (np.ndarray): A 2D numpy array with shape `(H, W)`, where `H` is the
|
||||
height, and `W` is the width.
|
||||
area_threshold (float): Threshold for relative area to remove or fill features.
|
||||
feature_type (FeatureType): Type of feature to adjust (`ISLAND` for removing
|
||||
islands, `HOLE` for filling holes).
|
||||
|
||||
Returns:
|
||||
np.ndarray: A 2D numpy array containing mask.
|
||||
"""
|
||||
height, width = mask.shape
|
||||
total_area = width * height
|
||||
|
||||
mask = np.uint8(mask * 255)
|
||||
operation = (
|
||||
cv2.RETR_EXTERNAL
|
||||
if feature_type == FeatureType.ISLAND
|
||||
else cv2.RETR_CCOMP
|
||||
)
|
||||
contours, _ = cv2.findContours(
|
||||
mask, operation, cv2.CHAIN_APPROX_SIMPLE
|
||||
)
|
||||
|
||||
for contour in contours:
|
||||
area = cv2.contourArea(contour)
|
||||
relative_area = area / total_area
|
||||
if relative_area < area_threshold:
|
||||
cv2.drawContours(
|
||||
image=mask,
|
||||
contours=[contour],
|
||||
contourIdx=-1,
|
||||
color=(
|
||||
0 if feature_type == FeatureType.ISLAND else 255
|
||||
),
|
||||
thickness=-1,
|
||||
)
|
||||
return np.where(mask > 0, 1, 0).astype(bool)
|
||||
|
||||
|
||||
def masks_to_marks(masks: np.ndarray) -> sv.Detections:
|
||||
"""
|
||||
Converts a set of masks to a marks (sv.Detections) object.
|
||||
|
||||
Parameters:
|
||||
masks (np.ndarray): A 3D numpy array with shape `(N, H, W)`, where `N` is the
|
||||
number of masks, `H` is the height, and `W` is the width.
|
||||
|
||||
Returns:
|
||||
sv.Detections: An object containing the masks and their bounding box
|
||||
coordinates.
|
||||
"""
|
||||
if len(masks) == 0:
|
||||
marks = sv.Detections.empty()
|
||||
marks.mask = np.empty((0, 0, 0), dtype=bool)
|
||||
return marks
|
||||
return sv.Detections(
|
||||
mask=masks, xyxy=sv.mask_to_xyxy(masks=masks)
|
||||
)
|
||||
|
||||
|
||||
def refine_marks(
|
||||
marks: sv.Detections,
|
||||
maximum_hole_area: float = 0.01,
|
||||
maximum_island_area: float = 0.01,
|
||||
minimum_mask_area: float = 0.02,
|
||||
maximum_mask_area: float = 1.0,
|
||||
) -> sv.Detections:
|
||||
"""
|
||||
Refines a set of masks by removing small islands and holes, and filtering by mask
|
||||
area.
|
||||
|
||||
Parameters:
|
||||
marks (sv.Detections): An object containing the masks and their bounding box
|
||||
coordinates.
|
||||
maximum_hole_area (float): The maximum relative area of holes to be filled in
|
||||
each mask.
|
||||
maximum_island_area (float): The maximum relative area of islands to be removed
|
||||
from each mask.
|
||||
minimum_mask_area (float): The minimum relative area for a mask to be retained.
|
||||
maximum_mask_area (float): The maximum relative area for a mask to be retained.
|
||||
|
||||
Returns:
|
||||
sv.Detections: An object containing the masks and their bounding box
|
||||
coordinates.
|
||||
"""
|
||||
result_masks = []
|
||||
for mask in marks.mask:
|
||||
mask = adjust_mask_features_by_relative_area(
|
||||
mask=mask,
|
||||
area_threshold=maximum_island_area,
|
||||
feature_type=FeatureType.ISLAND,
|
||||
)
|
||||
mask = adjust_mask_features_by_relative_area(
|
||||
mask=mask,
|
||||
area_threshold=maximum_hole_area,
|
||||
feature_type=FeatureType.HOLE,
|
||||
)
|
||||
if np.any(mask):
|
||||
result_masks.append(mask)
|
||||
result_masks = np.array(result_masks)
|
||||
result_masks = filter_masks_by_relative_area(
|
||||
masks=result_masks,
|
||||
minimum_area=minimum_mask_area,
|
||||
maximum_area=maximum_mask_area,
|
||||
)
|
||||
return sv.Detections(
|
||||
mask=result_masks, xyxy=sv.mask_to_xyxy(masks=result_masks)
|
||||
)
|
@ -1,27 +0,0 @@
|
||||
import tiktoken
|
||||
|
||||
|
||||
def limit_tokens_from_string(
|
||||
string: str, model: str = "gpt-4", limit: int = 500
|
||||
) -> str:
|
||||
"""Limits the number of tokens in a string
|
||||
|
||||
Args:
|
||||
string (str): _description_
|
||||
model (str): _description_
|
||||
limit (int): _description_
|
||||
|
||||
Returns:
|
||||
str: _description_
|
||||
"""
|
||||
try:
|
||||
encoding = tiktoken.encoding_for_model(model)
|
||||
except Exception:
|
||||
encoding = tiktoken.encoding_for_model(
|
||||
"gpt2"
|
||||
) # Fallback for others.
|
||||
|
||||
encoded = encoding.encode(string)
|
||||
|
||||
out = encoding.decode(encoded[:limit])
|
||||
return out
|
Loading…
Reference in new issue