openaichat documentation

pull/64/head
Kye 1 year ago
parent 20b1020a2e
commit 16e8ef2af8

@ -0,0 +1,181 @@
# `OpenAIChat`` Documentation
## Table of Contents
1. [Introduction](#introduction)
2. [Class Overview](#class-overview)
3. [Class Architecture](#class-architecture)
4. [Class Attributes](#class-attributes)
5. [Methods](#methods)
- [Construction](#construction)
- [Configuration](#configuration)
- [Message Handling](#message-handling)
- [Generation](#generation)
- [Tokenization](#tokenization)
6. [Usage Examples](#usage-examples)
7. [Additional Information](#additional-information)
---
## 1. Introduction <a name="introduction"></a>
The `OpenAIChat` class is part of the LangChain library and serves as an interface to interact with OpenAI's Chat large language models. This documentation provides an in-depth understanding of the class, its attributes, methods, and usage examples.
## 2. Class Overview <a name="class-overview"></a>
The `OpenAIChat` class is designed for conducting chat-like conversations with OpenAI's language models, such as GPT-3.5 Turbo. It allows you to create interactive conversations by sending messages and receiving model-generated responses. This class simplifies the process of integrating OpenAI's models into chatbot applications and other natural language processing tasks.
## 3. Class Architecture <a name="class-architecture"></a>
The `OpenAIChat` class is built on top of the `BaseLLM` class, which provides a foundation for working with large language models. This inheritance-based architecture allows for customization and extension while adhering to object-oriented programming principles.
## 4. Class Attributes <a name="class-attributes"></a>
Here are the key attributes and their descriptions for the `OpenAIChat` class:
| Attribute | Description |
|-----------------------------|-------------------------------------------------------------------------------|
| `client` | An internal client for making API calls to OpenAI. |
| `model_name` | The name of the language model to use (default: "gpt-3.5-turbo"). |
| `model_kwargs` | Additional model parameters valid for `create` calls not explicitly specified.|
| `openai_api_key` | The OpenAI API key used for authentication. |
| `openai_api_base` | The base URL for the OpenAI API. |
| `openai_proxy` | An explicit proxy URL for OpenAI requests. |
| `max_retries` | The maximum number of retries to make when generating (default: 6). |
| `prefix_messages` | A list of messages to set the initial conversation state (default: []). |
| `streaming` | Whether to stream the results or not (default: False). |
| `allowed_special` | A set of special tokens that are allowed (default: an empty set). |
| `disallowed_special` | A collection of special tokens that are not allowed (default: "all"). |
## 5. Methods <a name="methods"></a>
### 5.1 Construction <a name="construction"></a>
#### 5.1.1 `__init__(self, model_name: str = "gpt-3.5-turbo", openai_api_key: Optional[str] = None, openai_api_base: Optional[str] = None, openai_proxy: Optional[str] = None, max_retries: int = 6, prefix_messages: List = [])`
- Description: Initializes an OpenAIChat object.
- Arguments:
- `model_name` (str): The name of the language model to use (default: "gpt-3.5-turbo").
- `openai_api_key` (str, optional): The OpenAI API key used for authentication.
- `openai_api_base` (str, optional): The base URL for the OpenAI API.
- `openai_proxy` (str, optional): An explicit proxy URL for OpenAI requests.
- `max_retries` (int): The maximum number of retries to make when generating (default: 6).
- `prefix_messages` (List): A list of messages to set the initial conversation state (default: []).
### 5.2 Configuration <a name="configuration"></a>
#### 5.2.1 `build_extra(self, values: Dict[str, Any]) -> Dict[str, Any]`
- Description: Builds extra kwargs from additional parameters passed in.
- Arguments:
- `values` (dict): Values and parameters to build extra kwargs.
- Returns:
- Dict[str, Any]: A dictionary of built extra kwargs.
#### 5.2.2 `validate_environment(self, values: Dict) -> Dict`
- Description: Validates that the API key and Python package exist in the environment.
- Arguments:
- `values` (dict): The class values and parameters.
- Returns:
- Dict: A dictionary of validated values.
### 5.3 Message Handling <a name="message-handling"></a>
#### 5.3.1 `_get_chat_params(self, prompts: List[str], stop: Optional[List[str]] = None) -> Tuple`
- Description: Gets chat-related parameters for generating responses.
- Arguments:
- `prompts` (list): List of user messages.
- `stop` (list, optional): List of stop words.
- Returns:
- Tuple: Messages and parameters.
### 5.4 Generation <a name="generation"></a>
#### 5.4.1 `_stream(self, prompt: str, stop: Optional[List[str]] = None, run_manager: Optional[CallbackManagerForLLMRun] = None, **kwargs: Any) -> Iterator[GenerationChunk]`
- Description: Generates text asynchronously using the OpenAI API.
- Arguments:
- `prompt` (str): The user's message.
- `stop` (list, optional): List of stop words.
- `run_manager` (optional): Callback manager for asynchronous generation.
- `**kwargs` (dict): Additional parameters for asynchronous generation.
- Returns:
- Iterator[GenerationChunk]: An iterator of generated text chunks.
#### 5.4.2 `_agenerate(self, prompts: List[str], stop: Optional[List[str]] = None, run_manager: Optional[AsyncCallbackManagerForLLMRun] = None, **kwargs: Any) -> LLMResult`
- Description: Generates text asynchronously using the OpenAI API (async version).
- Arguments:
- `prompts` (list): List of user messages.
- `stop` (list, optional): List of stop words.
- `run_manager` (optional): Callback manager for asynchronous generation.
- `**kwargs` (dict): Additional parameters for asynchronous generation.
- Returns:
- LLMResult: A result object containing the generated text.
### 5.5 Tokenization <a name="tokenization"></a>
#### 5.5.1 `get_token_ids(self, text: str) -> List[int]`
- Description: Gets token IDs using the tiktoken package.
- Arguments:
- `text` (str): The text for which to calculate token IDs.
- Returns:
- List[int]: A list of
token IDs.
## 6. Usage Examples <a name="usage-examples"></a>
### Example 1: Initializing `OpenAIChat`
```python
from swarms.models import OpenAIChat
# Initialize OpenAIChat with model name and API key
openai_chat = OpenAIChat(model_name="gpt-3.5-turbo", openai_api_key="YOUR_API_KEY")
```
### Example 2: Sending Messages and Generating Responses
```python
# Define a conversation
conversation = [
"User: Tell me a joke.",
"Assistant: Why did the chicken cross the road?",
"User: I don't know. Why?",
"Assistant: To get to the other side!",
]
# Set the conversation as the prefix messages
openai_chat.prefix_messages = conversation
# Generate a response
user_message = "User: Tell me another joke."
response = openai_chat.generate([user_message])
# Print the generated response
print(response[0][0].text) # Output: "Assistant: Why don't scientists trust atoms? Because they make up everything!"
```
### Example 3: Asynchronous Generation
```python
import asyncio
# Define an asynchronous function for generating responses
async def generate_responses():
user_message = "User: Tell me a fun fact."
async for chunk in openai_chat.stream([user_message]):
print(chunk.text)
# Run the asynchronous generation function
asyncio.run(generate_responses())
```
## 7. Additional Information <a name="additional-information"></a>
- To use the `OpenAIChat` class, you should have the `openai` Python package installed, and the environment variable `OPENAI_API_KEY` set with your API key.
- Any parameters that are valid to be passed to the `openai.create` call can be passed to the `OpenAIChat` constructor.
- You can customize the behavior of the class by setting various attributes, such as `model_name`, `openai_api_key`, `prefix_messages`, and more.
- For asynchronous generation, you can use the `_stream` and `_agenerate` methods to interactively receive model-generated text chunks.
- To calculate token IDs, you can use the `get_token_ids` method, which utilizes the `tiktoken` package. Make sure to install the `tiktoken` package with `pip install tiktoken` if needed.
---
This documentation provides a comprehensive overview of the `OpenAIChat` class, its attributes, methods, and usage examples. You can use this class to create chatbot applications, conduct conversations with language models, and explore the capabilities of OpenAI's GPT-3.5 Turbo model.
Loading…
Cancel
Save