parent
f7116c8e9f
commit
199aa904b7
@ -0,0 +1,43 @@
|
||||
import requests
|
||||
import os
|
||||
|
||||
class Anthropic:
|
||||
"""Anthropic large language models."""
|
||||
|
||||
def __init__(self, model="claude-2", max_tokens_to_sample=256, temperature=None, top_k=None, top_p=None, streaming=False, default_request_timeout=None):
|
||||
self.model = model
|
||||
self.max_tokens_to_sample = max_tokens_to_sample
|
||||
self.temperature = temperature
|
||||
self.top_k = top_k
|
||||
self.top_p = top_p
|
||||
self.streaming = streaming
|
||||
self.default_request_timeout = default_request_timeout or 600
|
||||
self.anthropic_api_url = os.getenv("ANTHROPIC_API_URL", "https://api.anthropic.com")
|
||||
self.anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
|
||||
|
||||
def _default_params(self):
|
||||
"""Get the default parameters for calling Anthropic API."""
|
||||
d = {
|
||||
"max_tokens_to_sample": self.max_tokens_to_sample,
|
||||
"model": self.model,
|
||||
}
|
||||
if self.temperature is not None:
|
||||
d["temperature"] = self.temperature
|
||||
if self.top_k is not None:
|
||||
d["top_k"] = self.top_k
|
||||
if self.top_p is not None:
|
||||
d["top_p"] = self.top_p
|
||||
return d
|
||||
|
||||
def _call(self, prompt, stop=None):
|
||||
"""Call out to Anthropic's completion endpoint."""
|
||||
stop = stop or []
|
||||
params = self._default_params()
|
||||
headers = {"Authorization": f"Bearer {self.anthropic_api_key}"}
|
||||
data = {
|
||||
"prompt": prompt,
|
||||
"stop_sequences": stop,
|
||||
**params
|
||||
}
|
||||
response = requests.post(f"{self.anthropic_api_url}/completions", headers=headers, json=data, timeout=self.default_request_timeout)
|
||||
return response.json().get("completion")
|
@ -0,0 +1,186 @@
|
||||
import json
|
||||
from typing import List
|
||||
|
||||
from langchain.tools.base import BaseTool
|
||||
|
||||
FINISH_NAME = "finish"
|
||||
|
||||
|
||||
class PromptGenerator:
|
||||
"""A class for generating custom prompt strings.
|
||||
|
||||
Does this based on constraints, commands, resources, and performance evaluations.
|
||||
"""
|
||||
|
||||
def __init__(self) -> None:
|
||||
"""Initialize the PromptGenerator object.
|
||||
|
||||
Starts with empty lists of constraints, commands, resources,
|
||||
and performance evaluations.
|
||||
"""
|
||||
self.constraints: List[str] = []
|
||||
self.commands: List[BaseTool] = []
|
||||
self.resources: List[str] = []
|
||||
self.performance_evaluation: List[str] = []
|
||||
self.response_format = {
|
||||
"thoughts": {
|
||||
"text": "thought",
|
||||
"reasoning": "reasoning",
|
||||
"plan": "- short bulleted\n- list that conveys\n- long-term plan",
|
||||
"criticism": "constructive self-criticism",
|
||||
"speak": "thoughts summary to say to user",
|
||||
},
|
||||
"command": {"name": "command name", "args": {"arg name": "value"}},
|
||||
}
|
||||
|
||||
def add_constraint(self, constraint: str) -> None:
|
||||
"""
|
||||
Add a constraint to the constraints list.
|
||||
|
||||
Args:
|
||||
constraint (str): The constraint to be added.
|
||||
"""
|
||||
self.constraints.append(constraint)
|
||||
|
||||
def add_tool(self, tool: BaseTool) -> None:
|
||||
self.commands.append(tool)
|
||||
|
||||
def _generate_command_string(self, tool: BaseTool) -> str:
|
||||
output = f"{tool.name}: {tool.description}"
|
||||
output += f", args json schema: {json.dumps(tool.args)}"
|
||||
return output
|
||||
|
||||
def add_resource(self, resource: str) -> None:
|
||||
"""
|
||||
Add a resource to the resources list.
|
||||
|
||||
Args:
|
||||
resource (str): The resource to be added.
|
||||
"""
|
||||
self.resources.append(resource)
|
||||
|
||||
def add_performance_evaluation(self, evaluation: str) -> None:
|
||||
"""
|
||||
Add a performance evaluation item to the performance_evaluation list.
|
||||
|
||||
Args:
|
||||
evaluation (str): The evaluation item to be added.
|
||||
"""
|
||||
self.performance_evaluation.append(evaluation)
|
||||
|
||||
def _generate_numbered_list(self, items: list, item_type: str = "list") -> str:
|
||||
"""
|
||||
Generate a numbered list from given items based on the item_type.
|
||||
|
||||
Args:
|
||||
items (list): A list of items to be numbered.
|
||||
item_type (str, optional): The type of items in the list.
|
||||
Defaults to 'list'.
|
||||
|
||||
Returns:
|
||||
str: The formatted numbered list.
|
||||
"""
|
||||
if item_type == "command":
|
||||
command_strings = [
|
||||
f"{i + 1}. {self._generate_command_string(item)}"
|
||||
for i, item in enumerate(items)
|
||||
]
|
||||
finish_description = (
|
||||
"use this to signal that you have finished all your objectives"
|
||||
)
|
||||
finish_args = (
|
||||
'"response": "final response to let '
|
||||
'people know you have finished your objectives"'
|
||||
)
|
||||
finish_string = (
|
||||
f"{len(items) + 1}. {FINISH_NAME}: "
|
||||
f"{finish_description}, args: {finish_args}"
|
||||
)
|
||||
return "\n".join(command_strings + [finish_string])
|
||||
else:
|
||||
return "\n".join(f"{i+1}. {item}" for i, item in enumerate(items))
|
||||
|
||||
def generate_prompt_string(self) -> str:
|
||||
"""Generate a prompt string.
|
||||
|
||||
Returns:
|
||||
str: The generated prompt string.
|
||||
"""
|
||||
formatted_response_format = json.dumps(self.response_format, indent=4)
|
||||
prompt_string = (
|
||||
f"Constraints:\n{self._generate_numbered_list(self.constraints)}\n\n"
|
||||
f"Commands:\n"
|
||||
f"{self._generate_numbered_list(self.commands, item_type='command')}\n\n"
|
||||
f"Resources:\n{self._generate_numbered_list(self.resources)}\n\n"
|
||||
f"Performance Evaluation:\n"
|
||||
f"{self._generate_numbered_list(self.performance_evaluation)}\n\n"
|
||||
f"You should only respond in JSON format as described below "
|
||||
f"\nResponse Format: \n{formatted_response_format} "
|
||||
f"\nEnsure the response can be parsed by Python json.loads"
|
||||
)
|
||||
|
||||
return prompt_string
|
||||
|
||||
|
||||
def get_prompt(tools: List[BaseTool]) -> str:
|
||||
"""Generates a prompt string.
|
||||
|
||||
It includes various constraints, commands, resources, and performance evaluations.
|
||||
|
||||
Returns:
|
||||
str: The generated prompt string.
|
||||
"""
|
||||
|
||||
# Initialize the PromptGenerator object
|
||||
prompt_generator = PromptGenerator()
|
||||
|
||||
# Add constraints to the PromptGenerator object
|
||||
prompt_generator.add_constraint(
|
||||
"~4000 word limit for short term memory. "
|
||||
"Your short term memory is short, "
|
||||
"so immediately save important information to files."
|
||||
)
|
||||
prompt_generator.add_constraint(
|
||||
"If you are unsure how you previously did something "
|
||||
"or want to recall past events, "
|
||||
"thinking about similar events will help you remember."
|
||||
)
|
||||
prompt_generator.add_constraint("No user assistance")
|
||||
prompt_generator.add_constraint(
|
||||
'Exclusively use the commands listed in double quotes e.g. "command name"'
|
||||
)
|
||||
|
||||
# Add commands to the PromptGenerator object
|
||||
for tool in tools:
|
||||
prompt_generator.add_tool(tool)
|
||||
|
||||
# Add resources to the PromptGenerator object
|
||||
prompt_generator.add_resource(
|
||||
"Internet access for searches and information gathering."
|
||||
)
|
||||
prompt_generator.add_resource("Long Term memory management.")
|
||||
prompt_generator.add_resource(
|
||||
"GPT-3.5 powered Agents for delegation of simple tasks."
|
||||
)
|
||||
prompt_generator.add_resource("File output.")
|
||||
|
||||
# Add performance evaluations to the PromptGenerator object
|
||||
prompt_generator.add_performance_evaluation(
|
||||
"Continuously review and analyze your actions "
|
||||
"to ensure you are performing to the best of your abilities."
|
||||
)
|
||||
prompt_generator.add_performance_evaluation(
|
||||
"Constructively self-criticize your big-picture behavior constantly."
|
||||
)
|
||||
prompt_generator.add_performance_evaluation(
|
||||
"Reflect on past decisions and strategies to refine your approach."
|
||||
)
|
||||
prompt_generator.add_performance_evaluation(
|
||||
"Every command has a cost, so be smart and efficient. "
|
||||
"Aim to complete tasks in the least number of steps."
|
||||
)
|
||||
|
||||
# Generate the prompt string
|
||||
prompt_string = prompt_generator.generate_prompt_string()
|
||||
|
||||
return prompt_string
|
@ -1,35 +1,24 @@
|
||||
"""Tool for asking human input."""
|
||||
|
||||
from typing import Callable, Optional
|
||||
|
||||
from pydantic import Field
|
||||
|
||||
from langchain.callbacks.manager import CallbackManagerForToolRun
|
||||
from langchain.tools.base import BaseTool
|
||||
|
||||
|
||||
def _print_func(text: str) -> None:
|
||||
print("\n")
|
||||
print(text)
|
||||
|
||||
|
||||
class HumanInputRun(BaseTool):
|
||||
class HumanInputRun:
|
||||
"""Tool that asks user for input."""
|
||||
|
||||
name = "human"
|
||||
description = (
|
||||
"You can ask a human for guidance when you think you "
|
||||
"got stuck or you are not sure what to do next. "
|
||||
"The input should be a question for the human."
|
||||
)
|
||||
prompt_func: Callable[[str], None] = Field(default_factory=lambda: _print_func)
|
||||
input_func: Callable = Field(default_factory=lambda: input)
|
||||
|
||||
def _run(
|
||||
self,
|
||||
query: str,
|
||||
run_manager: Optional[CallbackManagerForToolRun] = None,
|
||||
) -> str:
|
||||
def __init__(self, prompt_func=None, input_func=None):
|
||||
self.name = "human"
|
||||
self.description = (
|
||||
"You can ask a human for guidance when you think you "
|
||||
"got stuck or you are not sure what to do next. "
|
||||
"The input should be a question for the human."
|
||||
)
|
||||
self.prompt_func = prompt_func if prompt_func else self._print_func
|
||||
self.input_func = input_func if input_func else input
|
||||
|
||||
def _print_func(self, text: str) -> None:
|
||||
print("\n")
|
||||
print(text)
|
||||
|
||||
def run(self, query: str) -> str:
|
||||
"""Use the Human input tool."""
|
||||
self.prompt_func(query)
|
||||
return self.input_func()
|
Loading…
Reference in new issue