From 1a8e305c29a5d4d422abeedc258b7d6c0a2162bb Mon Sep 17 00:00:00 2001 From: Occupying-Mars Date: Sun, 1 Dec 2024 01:03:19 +0530 Subject: [PATCH] import fixes --- README.md | 34 +++++++++++++++++++++++----------- 1 file changed, 23 insertions(+), 11 deletions(-) diff --git a/README.md b/README.md index 6469883d..effb1680 100644 --- a/README.md +++ b/README.md @@ -131,6 +131,13 @@ The `run` method is the primary entry point for executing tasks with an `Agent` ```python from swarms import Agent +from swarms.models import OpenAIChat + +model = OpenAIChat( + openai_api_key="your-api-key", + model_name="gpt-4o-mini", + temperature=0.1 +) agent = Agent( agent_name="Stock-Analysis-Agent", @@ -168,7 +175,7 @@ The `Agent` class offers a range of settings to tailor its behavior to specific ```python import os from swarms import Agent -from swarm_models import OpenAIChat +from swarms.models import OpenAIChat from swarms.prompts.finance_agent_sys_prompt import ( FINANCIAL_AGENT_SYS_PROMPT, @@ -231,7 +238,7 @@ graph TD ```python import os -from swarms_memory import ChromaDB +from swarms.memory import ChromaDB # Initialize the ChromaDB client for long-term memory management chromadb = ChromaDB( @@ -243,7 +250,7 @@ chromadb = ChromaDB( **Step 2: Define the Model** ```python -from swarm_models import Anthropic +from swarms.models import Anthropic from swarms.prompts.finance_agent_sys_prompt import ( FINANCIAL_AGENT_SYS_PROMPT, ) @@ -378,7 +385,7 @@ The following is an example of an agent that intakes a pydantic basemodel and ou ```python from pydantic import BaseModel, Field from swarms import Agent -from swarm_models import Anthropic +from swarms.models import OpenAIChat # Initialize the schema for the person's information @@ -410,7 +417,11 @@ agent = Agent( ), # Set the tool schema to the JSON string -- this is the key difference tool_schema=tool_schema, - llm=Anthropic(), + llm=OpenAIChat( + openai_api_key="your-api-key", + model_name="gpt-4o", + temperature=0.1 + ), max_loops=3, autosave=True, dashboard=False, @@ -442,6 +453,7 @@ Run the agent with multiple modalities useful for various real-world tasks in ma import os from dotenv import load_dotenv from swarms import Agent +from swarms.models import OpenAIChat from swarm_models import GPT4VisionAPI @@ -450,7 +462,7 @@ load_dotenv() # Initialize the language model -llm = GPT4VisionAPI( +llm = OpenAIChat( openai_api_key=os.environ.get("OPENAI_API_KEY"), max_tokens=500, ) @@ -552,7 +564,7 @@ Steps: For example, here's an example on how to create an agent from griptape. -Here’s how you can create a custom **Griptape** agent that integrates with the **Swarms** framework by inheriting from the `Agent` class in **Swarms** and overriding the `run(task: str) -> str` method. +Here's how you can create a custom **Griptape** agent that integrates with the **Swarms** framework by inheriting from the `Agent` class in **Swarms** and overriding the `run(task: str) -> str` method. ```python @@ -694,7 +706,7 @@ In this example, each `Agent` represents a task that is executed sequentially. T ```python import os from swarms import Agent, SequentialWorkflow -from swarm_models import OpenAIChat +from swarms.models import OpenAIChat # model = Anthropic(anthropic_api_key=os.getenv("ANTHROPIC_API_KEY")) company = "Nvidia" @@ -911,7 +923,7 @@ The `run` method returns the final output after all agents have processed the in from swarms import Agent, AgentRearrange -from swarm_models import Anthropic +from swarm.models import Anthropic # Initialize the director agent @@ -1288,7 +1300,7 @@ The `run` method returns a dictionary containing the outputs of each agent that ```python import os from swarms import Agent -from swarm_models import OpenAIChat +from swarms.models import OpenAIChat from swarms.structs.spreadsheet_swarm import SpreadSheetSwarm # Define custom system prompts for each social media platform @@ -1613,7 +1625,7 @@ The `SwarmRouter` class is a flexible routing system designed to manage differen import os from dotenv import load_dotenv from swarms import Agent -from swarm_models import OpenAIChat +from swarms.models import OpenAIChat from swarms.structs.swarm_router import SwarmRouter, SwarmType load_dotenv()