tools modile massive cleanup operation => segemtned all the tools in different topics

Former-commit-id: 267253283e
pull/47/head
Kye 2 years ago
parent ae61d18fb3
commit 1b7be9787f

@ -133,3 +133,5 @@ class Agent:
self.memory.add_documents([Document(page_content=memory_to_add)])
self.chat_history_memory.add_message(SystemMessage(content=result))

@ -0,0 +1,133 @@
#--------------------------------------> AUTO GPT TOOLS
# General
import os
import pandas as pd
from langchain.agents.agent_toolkits.pandas.base import create_pandas_dataframe_agent
from langchain.docstore.document import Document
import asyncio
# Tools
from contextlib import contextmanager
from typing import Optional
from langchain.agents import tool
ROOT_DIR = "./data/"
from langchain.tools import BaseTool, DuckDuckGoSearchRun
from langchain.text_splitter import RecursiveCharacterTextSplitter
from pydantic import Field
from langchain.chains.qa_with_sources.loading import BaseCombineDocumentsChain
@contextmanager
def pushd(new_dir):
"""Context manager for changing the current working directory."""
prev_dir = os.getcwd()
os.chdir(new_dir)
try:
yield
finally:
os.chdir(prev_dir)
@tool
def process_csv(
llm, csv_file_path: str, instructions: str, output_path: Optional[str] = None
) -> str:
"""Process a CSV by with pandas in a limited REPL.\
Only use this after writing data to disk as a csv file.\
Any figures must be saved to disk to be viewed by the human.\
Instructions should be written in natural language, not code. Assume the dataframe is already loaded."""
with pushd(ROOT_DIR):
try:
df = pd.read_csv(csv_file_path)
except Exception as e:
return f"Error: {e}"
agent = create_pandas_dataframe_agent(llm, df, max_iterations=30, verbose=False)
if output_path is not None:
instructions += f" Save output to disk at {output_path}"
try:
result = agent.run(instructions)
return result
except Exception as e:
return f"Error: {e}"
async def async_load_playwright(url: str) -> str:
"""Load the specified URLs using Playwright and parse using BeautifulSoup."""
from bs4 import BeautifulSoup
from playwright.async_api import async_playwright
results = ""
async with async_playwright() as p:
browser = await p.chromium.launch(headless=True)
try:
page = await browser.new_page()
await page.goto(url)
page_source = await page.content()
soup = BeautifulSoup(page_source, "html.parser")
for script in soup(["script", "style"]):
script.extract()
text = soup.get_text()
lines = (line.strip() for line in text.splitlines())
chunks = (phrase.strip() for line in lines for phrase in line.split(" "))
results = "\n".join(chunk for chunk in chunks if chunk)
except Exception as e:
results = f"Error: {e}"
await browser.close()
return results
def run_async(coro):
event_loop = asyncio.get_event_loop()
return event_loop.run_until_complete(coro)
@tool
def browse_web_page(url: str) -> str:
"""Verbose way to scrape a whole webpage. Likely to cause issues parsing."""
return run_async(async_load_playwright(url))
def _get_text_splitter():
return RecursiveCharacterTextSplitter(
# Set a really small chunk size, just to show.
chunk_size = 500,
chunk_overlap = 20,
length_function = len,
)
class WebpageQATool(BaseTool):
name = "query_webpage"
description = "Browse a webpage and retrieve the information relevant to the question."
text_splitter: RecursiveCharacterTextSplitter = Field(default_factory=_get_text_splitter)
qa_chain: BaseCombineDocumentsChain
def _run(self, url: str, question: str) -> str:
"""Useful for browsing websites and scraping the text information."""
result = browse_web_page.run(url)
docs = [Document(page_content=result, metadata={"source": url})]
web_docs = self.text_splitter.split_documents(docs)
results = []
# TODO: Handle this with a MapReduceChain
for i in range(0, len(web_docs), 4):
input_docs = web_docs[i:i+4]
window_result = self.qa_chain({"input_documents": input_docs, "question": question}, return_only_outputs=True)
results.append(f"Response from window {i} - {window_result}")
results_docs = [Document(page_content="\n".join(results), metadata={"source": url})]
return self.qa_chain({"input_documents": results_docs, "question": question}, return_only_outputs=True)
async def _arun(self, url: str, question: str) -> str:
raise NotImplementedError
# query_website_tool = WebpageQATool(qa_chain=load_qa_with_sources_chain(llm))
# !pip install duckduckgo_search
web_search = DuckDuckGoSearchRun()

@ -1,9 +1,19 @@
from __future__ import annotations
from enum import Enum
from abc import ABC, abstractmethod
from typing import Any, Callable, Optional, Type, Union
from pydantic import BaseModel
from swarms.utils.logger import logger
class ToolScope(Enum):
GLOBAL = "global"
SESSION = "session"
class ToolException(Exception):
pass
@ -88,3 +98,115 @@ def tool(
return Tool(name, description, func)
return decorator
SessionGetter = Callable[[], Tuple[str, AgentExecutor]]
def tool(
name: str,
description: str,
scope: ToolScope = ToolScope.GLOBAL,
):
def decorator(func):
func.name = name
func.description = description
func.is_tool = True
func.scope = scope
return func
return decorator
class ToolWrapper:
def __init__(self, name: str, description: str, scope: ToolScope, func):
self.name = name
self.description = description
self.scope = scope
self.func = func
def is_global(self) -> bool:
return self.scope == ToolScope.GLOBAL
def is_per_session(self) -> bool:
return self.scope == ToolScope.SESSION
def to_tool(
self,
get_session: SessionGetter = lambda: [],
) -> BaseTool:
func = self.func
if self.is_per_session():
def func(*args, **kwargs):
return self.func(*args, **kwargs, get_session=get_session)
return Tool(
name=self.name,
description=self.description,
func=func,
)
class BaseToolSet:
def tool_wrappers(cls) -> list[ToolWrapper]:
methods = [
getattr(cls, m) for m in dir(cls) if hasattr(getattr(cls, m), "is_tool")
]
return [ToolWrapper(m.name, m.description, m.scope, m) for m in methods]
class ToolsFactory:
@staticmethod
def from_toolset(
toolset: BaseToolSet,
only_global: Optional[bool] = False,
only_per_session: Optional[bool] = False,
get_session: SessionGetter = lambda: [],
) -> list[BaseTool]:
tools = []
for wrapper in toolset.tool_wrappers():
if only_global and not wrapper.is_global():
continue
if only_per_session and not wrapper.is_per_session():
continue
tools.append(wrapper.to_tool(get_session=get_session))
return tools
@staticmethod
def create_global_tools(
toolsets: list[BaseToolSet],
) -> list[BaseTool]:
tools = []
for toolset in toolsets:
tools.extend(
ToolsFactory.from_toolset(
toolset=toolset,
only_global=True,
)
)
return tools
@staticmethod
def create_per_session_tools(
toolsets: list[BaseToolSet],
get_session: SessionGetter = lambda: [],
) -> list[BaseTool]:
tools = []
for toolset in toolsets:
tools.extend(
ToolsFactory.from_toolset(
toolset=toolset,
only_per_session=True,
get_session=get_session,
)
)
return tools
@staticmethod
def create_global_tools_from_names(
toolnames: list[str],
llm: Optional[BaseLLM],
) -> list[BaseTool]:
return load_tools(toolnames, llm=llm)

@ -0,0 +1,837 @@
##########################################+> SYS
import signal
from typing import Optional, Tuple
from ptrace.debugger import (
NewProcessEvent,
ProcessExecution,
ProcessExit,
ProcessSignal,
PtraceDebugger,
PtraceProcess,
)
from ptrace.func_call import FunctionCallOptions
from ptrace.syscall import PtraceSyscall
from ptrace.tools import signal_to_exitcode
from swarms.utils.logger import logger
from swarms.agents.tools.base import SessionGetter, BaseTool, ToolScope, tool, BaseToolSet
class SyscallTimeoutException(Exception):
def __init__(self, pid: int, *args) -> None:
super().__init__(f"deadline exceeded while waiting syscall for {pid}", *args)
class SyscallTracer:
def __init__(self, pid: int):
self.debugger: PtraceDebugger = PtraceDebugger()
self.pid: int = pid
self.process: PtraceProcess = None
def is_waiting(self, syscall: PtraceSyscall) -> bool:
if syscall.name.startswith("wait"):
return True
return False
def attach(self):
self.process = self.debugger.addProcess(self.pid, False)
def detach(self):
self.process.detach()
self.debugger.quit()
def set_timer(self, timeout: int):
def handler(signum, frame):
raise SyscallTimeoutException(self.process.pid)
signal.signal(signal.SIGALRM, handler)
signal.alarm(timeout)
def reset_timer(self):
signal.alarm(0)
def wait_syscall_with_timeout(self, timeout: int):
self.set_timer(timeout)
self.process.waitSyscall()
self.reset_timer()
def wait_until_stop_or_exit(self) -> Tuple[Optional[int], str]:
self.process.syscall()
exitcode = None
reason = ""
while True:
if not self.debugger:
break
try:
self.wait_syscall_with_timeout(30)
except ProcessExit as event:
if event.exitcode is not None:
exitcode = event.exitcode
continue
except ProcessSignal as event:
event.process.syscall(event.signum)
exitcode = signal_to_exitcode(event.signum)
reason = event.reason
continue
except NewProcessEvent as event:
continue
except ProcessExecution as event:
continue
except Exception as e:
reason = str(e)
break
syscall = self.process.syscall_state.event(
FunctionCallOptions(
write_types=False,
write_argname=False,
string_max_length=300,
replace_socketcall=True,
write_address=False,
max_array_count=20,
)
)
self.process.syscall()
if syscall is None:
continue
if syscall.result:
continue
self.reset_timer()
return exitcode, reason
##########################################+> SYS CALL END
############### => st dout.py
import os
import time
import subprocess
from datetime import datetime
from typing import Callable, Literal, Optional, Union, Tuple
PipeType = Union[Literal["stdout"], Literal["stderr"]]
class StdoutTracer:
def __init__(
self,
process: subprocess.Popen,
timeout: int = 30,
interval: int = 0.1,
on_output: Callable[[PipeType, str], None] = lambda: None,
):
self.process: subprocess.Popen = process
self.timeout: int = timeout
self.interval: int = interval
self.last_output: datetime = None
self.on_output: Callable[[PipeType, str], None] = on_output
def nonblock(self):
os.set_blocking(self.process.stdout.fileno(), False)
os.set_blocking(self.process.stderr.fileno(), False)
def get_output(self, pipe: PipeType) -> str:
output = None
if pipe == "stdout":
output = self.process.stdout.read()
elif pipe == "stderr":
output = self.process.stderr.read()
if output:
decoded = output.decode()
self.on_output(pipe, decoded)
self.last_output = datetime.now()
return decoded
return ""
def last_output_passed(self, seconds: int) -> bool:
return (datetime.now() - self.last_output).seconds > seconds
def wait_until_stop_or_exit(self) -> Tuple[Optional[int], str]:
self.nonblock()
self.last_output = datetime.now()
output = ""
exitcode = None
while True:
new_stdout = self.get_output("stdout")
if new_stdout:
output += new_stdout
new_stderr = self.get_output("stderr")
if new_stderr:
output += new_stderr
if self.process.poll() is not None:
exitcode = self.process.poll()
break
if self.last_output_passed(self.timeout):
self.process.kill()
break
time.sleep(self.interval)
return (exitcode, output)
################## => stdout end
import os
import subprocess
from typing import Dict, List
from swarms.utils.main import ANSI, Color, Style # test
class Terminal(BaseToolSet):
def __init__(self):
self.sessions: Dict[str, List[SyscallTracer]] = {}
@tool(
name="Terminal",
description="Executes commands in a terminal."
"If linux errno occurs, we have to solve the problem with the terminal. "
"Input must be one valid command. "
"Output will be any output from running that command.",
scope=ToolScope.SESSION,
)
def execute(self, commands: str, get_session: SessionGetter) -> str:
session, _ = get_session()
try:
process = subprocess.Popen(
commands,
shell=True,
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
)
logger.info(ANSI("Realtime Terminal Output").to(Color.magenta()) + ": ")
output = ""
tracer = StdoutTracer(
process,
on_output=lambda p, o: logger.info(
ANSI(p).to(Style.dim()) + " " + o.strip("\n")
),
)
exitcode, output = tracer.wait_until_stop_or_exit()
except Exception as e:
output = str(e)
logger.debug(
f"\nProcessed Terminal, Input Commands: {commands} "
f"Output Answer: {output}"
)
return output
# if __name__ == "__main__":
# import time
# o = Terminal().execute(
# "sleep 1; echo 1; sleep 2; echo 2; sleep 3; echo 3; sleep 10;",
# lambda: ("", None),
# )
# print(o)
# time.sleep(10) # see if timer has reset
###################=> EDITOR/VERIFY
from pathlib import Path
def verify(func):
def wrapper(*args, **kwargs):
try:
filepath = args[0].filepath
except AttributeError:
raise Exception("This tool doesn't have filepath. Please check your code.")
if not str(Path(filepath).resolve()).startswith(str(Path().resolve())):
return "You can't access file outside of playground."
return func(*args, **kwargs)
return wrapper
#=====================> EDITOR/END VERIFY
###### EDITOR/WRITE.PY
"""
write protocol:
<filepath>
<content>
"""
class WriteCommand:
separator = "\n"
def __init__(self, filepath: str, content: int):
self.filepath: str = filepath
self.content: str = content
self.mode: str = "w"
def with_mode(self, mode: str) -> "WriteCommand":
self.mode = mode
return self
@verify
def execute(self) -> str:
dir_path = os.path.dirname(self.filepath)
if dir_path:
os.makedirs(dir_path, exist_ok=True)
with open(self.filepath, self.mode) as f:
f.write(self.content)
return self.content
@staticmethod
def from_str(command: str) -> "WriteCommand":
filepath = command.split(WriteCommand.separator)[0]
return WriteCommand(filepath, command[len(filepath) + 1 :])
class CodeWriter:
@staticmethod
def write(command: str) -> str:
return WriteCommand.from_str(command).with_mode("w").execute()
@staticmethod
def append(command: str) -> str:
return WriteCommand.from_str(command).with_mode("a").execute()
#================> END
#============================> EDITOR/READ.PY
"""
read protocol:
<filepath>|<start line>-<end line>
"""
class Line:
def __init__(self, content: str, line_number: int, depth: int):
self.__content: str = content
self.__line_number: int = line_number
self.__depth: int = depth
self.__children: List[Line] = []
def get_content(self) -> str:
return self.__content
def get_depth(self) -> int:
return self.__depth
def append_child(self, child: "Line") -> None:
self.__children.append(child)
def find_by_lte_depth(self, depth: int) -> List["Line"]:
if self.__depth > depth:
return []
lines: List[Line] = [self]
for child in self.__children:
lines += child.find_by_lte_depth(depth)
return lines
def find_by_content(self, content: str) -> List["Line"]:
if content in self.__content:
return [self]
lines: List[Line] = []
for child in self.__children:
lines += child.find_by_content(content)
return lines
def find_last_lines(self) -> List["Line"]:
if len(self.__children) == 0:
return [self]
else:
return [self, *self.__children[-1].find_last_lines()]
def print(self, depth: int = 0) -> None:
print(f"{' ' * depth}{self}", end="")
for child in self.__children:
child.print(depth + 1)
def __repr__(self):
return f"{self.__line_number}: {self.__content}"
class CodeTree:
def __init__(self):
self.root: Line = Line("\n", -1, -1)
def append(self, content: str, line_number: int) -> None:
last_lines: List[Line] = self.root.find_last_lines()
new_leading_spaces: int = self.__get_leading_spaces(content)
previous_line: Line = self.root
previous_leading_spaces: int = -1
for line in last_lines:
leading_spaces = self.__get_leading_spaces(line.get_content())
if (
previous_leading_spaces < new_leading_spaces
and new_leading_spaces <= leading_spaces
):
break
previous_line, previous_leading_spaces = line, leading_spaces
new_line_depth: int = previous_line.get_depth() + 1
previous_line.append_child(Line(content, line_number, new_line_depth))
def find_from_root(self, depth: int) -> List[Line]:
return self.root.find_by_lte_depth(depth)
def find_from_parent(self, depth: int, parent_content: str) -> List[Line]:
lines: List[Line] = self.root.find_by_content(parent_content)
if len(lines) == 0:
return []
parent = lines[0]
return parent.find_by_lte_depth(depth + parent.get_depth())
def print(self):
print("Code Tree:")
print("=================================")
self.root.print()
print("=================================")
def __get_leading_spaces(self, content: str) -> int:
return len(content) - len(content.lstrip())
class ReadCommand:
separator = "|"
def __init__(self, filepath: str, start: int, end: int):
self.filepath: str = filepath
self.start: int = start
self.end: int = end
@verify
def execute(self) -> str:
with open(self.filepath, "r") as f:
code = f.readlines()
if self.start == self.end:
code = code[self.start - 1]
else:
code = "".join(code[self.start - 1 : self.end])
return code
@staticmethod
def from_str(command: str) -> "ReadCommand":
filepath, line = command.split(ReadCommand.separator)
start, end = line.split("-")
return ReadCommand(filepath, int(start), int(end))
class SummaryCommand:
separator = "|"
def __init__(self, filepath: str, depth: int, parent_content: Optional[str] = None):
self.filepath: str = filepath
self.depth: int = depth
self.parent_content: Optional[str] = parent_content
@verify
def execute(self) -> str:
with open(self.filepath, "r") as f:
code = f.readlines()
code_tree = CodeTree()
for i, line in enumerate(code):
if line.strip() != "":
code_tree.append(line, i + 1)
if self.parent_content is None:
lines = code_tree.find_from_root(self.depth)
else:
lines = code_tree.find_from_parent(self.depth, self.parent_content)
return "".join([str(line) for line in lines])
@staticmethod
def from_str(command: str) -> "SummaryCommand":
command_list: List[str] = command.split(SummaryCommand.separator)
filepath: str = command_list[0]
depth: int = int(command_list[1])
parent_content: str | None = command_list[2] if len(command_list) == 3 else None
return SummaryCommand(
filepath=filepath, depth=depth, parent_content=parent_content
)
class CodeReader:
@staticmethod
def read(command: str) -> str:
return ReadCommand.from_str(command).execute()
@staticmethod
def summary(command: str) -> str:
return SummaryCommand.from_str(command).execute()
# if __name__ == "__main__":
# summary = CodeReader.summary("read.py|1|class ReadCommand:")
# print(summary)
#============================> EDITOR/READ.PY END
#=================================> EDITOR/PATCH.PY
"""
patch protocol:
<filepath>|<line>,<col>|<line>,<col>|<content>
---~~~+++===+++~~~---
<filepath>|<line>,<col>|<line>,<col>|<content>
---~~~+++===+++~~~---
...
---~~~+++===+++~~~---
let say original code is:
```
import requests
def crawl_news(keyword):
url = f"https://www.google.com/search?q={keyword}+news"
response = requests.get(url)
news = []
for result in response:
news.append(result.text)
return news
```
and we want to change it to:
```
import requests
from bs4 import BeautifulSoup
def crawl_news(keyword):
url = f"https://www.google.com/search?q={keyword}+news"
html = requests.get(url).text
soup = BeautifulSoup(html, "html.parser")
news_results = soup.find_all("div", class_="BNeawe vvjwJb AP7Wnd")
news_titles = []
for result in news_results:
news_titles.append(result.text)
return news_titles
```
then the command will be:
test.py|2,1|2,1|from bs4 import BeautifulSoup
---~~~+++===+++~~~---
test.py|5,5|5,33|html = requests.get(url).text
soup = BeautifulSoup(html, "html.parser")
news_results = soup.find_all("div", class_="BNeawe vvjwJb AP7Wnd")
---~~~+++===+++~~~---
test.py|7,5|9,13|news_titles = []
for result in news_results:
news_titles
---~~~+++===+++~~~---
test.py|11,16|11,16|_titles
"""
import re
class Position:
separator = ","
def __init__(self, line: int, col: int):
self.line: int = line
self.col: int = col
def __str__(self):
return f"(Ln {self.line}, Col {self.col})"
@staticmethod
def from_str(pos: str) -> "Position":
line, col = pos.split(Position.separator)
return Position(int(line) - 1, int(col) - 1)
class PatchCommand:
separator = "|"
def __init__(self, filepath: str, start: Position, end: Position, content: str):
self.filepath: str = filepath
self.start: Position = start
self.end: Position = end
self.content: str = content
def read_lines(self) -> list[str]:
with open(self.filepath, "r") as f:
lines = f.readlines()
return lines
def write_lines(self, lines: list[str]) -> int:
with open(self.filepath, "w") as f:
f.writelines(lines)
return sum([len(line) for line in lines])
@verify
def execute(self) -> Tuple[int, int]:
lines = self.read_lines()
before = sum([len(line) for line in lines])
lines[self.start.line] = (
lines[self.start.line][: self.start.col]
+ self.content
+ lines[self.end.line][self.end.col :]
)
lines = lines[: self.start.line + 1] + lines[self.end.line + 1 :]
after = self.write_lines(lines)
written = len(self.content)
deleted = before - after + written
return written, deleted
@staticmethod
def from_str(command: str) -> "PatchCommand":
match = re.search(
r"(.*)\|([0-9]*),([0-9]*)\|([0-9]*),([0-9]*)(\||\n)(.*)",
command,
re.DOTALL,
)
filepath = match.group(1)
start_line = match.group(2)
start_col = match.group(3)
end_line = match.group(4)
end_col = match.group(5)
content = match.group(7)
return PatchCommand(
filepath,
Position.from_str(f"{start_line},{start_col}"),
Position.from_str(f"{end_line},{end_col}"),
content,
)
class CodePatcher:
separator = "\n---~~~+++===+++~~~---\n"
@staticmethod
def sort_commands(commands: list[PatchCommand]) -> list[PatchCommand]:
return sorted(commands, key=lambda c: c.start.line, reverse=True)
@staticmethod
def patch(bulk_command: str) -> Tuple[int, int]:
commands = [
PatchCommand.from_str(command)
for command in bulk_command.split(CodePatcher.separator)
if command != ""
]
commands = CodePatcher.sort_commands(commands)
written, deleted = 0, 0
for command in commands:
if command:
w, d = command.execute()
written += w
deleted += d
return written, deleted
if __name__ == "__main__":
commands = """test.py|2,1|2,1|from bs4 import BeautifulSoup
---~~~+++===+++~~~---
test.py|5,5|5,33|html = requests.get(url).text
soup = BeautifulSoup(html, "html.parser")
news_results = soup.find_all("div", class_="BNeawe vvjwJb AP7Wnd")
---~~~+++===+++~~~---
test.py|7,5|9,13|news_titles = []
for result in news_results:
news_titles
---~~~+++===+++~~~---
test.py|11,16|11,16|_titles
"""
example = """import requests
def crawl_news(keyword):
url = f"https://www.google.com/search?q={keyword}+news"
response = requests.get(url)
news = []
for result in response:
news.append(result.text)
return news
"""
testfile = "test.py"
with open(testfile, "w") as f:
f.write(example)
patcher = CodePatcher()
written, deleted = patcher.patch(commands)
print(f"written: {written}, deleted: {deleted}")
####################### => EDITOR/PATCH.PY
###################### EDITOR// INIT.PY
class CodeEditor(BaseToolSet):
@tool(
name="CodeEditor.READ",
description="Read and understand code. "
"Input should be filename and line number group. ex. test.py|1-10 "
"and the output will be code. ",
)
def read(self, inputs: str) -> str:
try:
output = CodeReader.read(inputs)
except Exception as e:
output = str(e)
logger.debug(
f"\nProcessed CodeEditor.READ, Input Commands: {inputs} "
f"Output Answer: {output}"
)
return output
@tool(
name="CodeEditor.SUMMARY",
description="Summary code. "
"Read the code structured into a tree. "
"If you set specific line, it will show the code from the specific line. "
"Input should be filename, depth, and specific line if you want. ex. test.py|2 or test.py|3|print('hello world') "
"and the output will be list of (line number: code). ",
)
def summary(self, inputs: str) -> str:
try:
output = CodeReader.summary(inputs)
except Exception as e:
output = str(e)
logger.debug(
f"\nProcessed CodeEditor.SUMMARY, Input Commands: {inputs} "
f"Output Answer: {output}"
)
return output
@tool(
name="CodeEditor.APPEND",
description="Append code to the existing file. "
"If the code is completed, use the Terminal tool to execute it, if not, append the code through the this tool. "
"Input should be filename and code to append. "
"Input code must be the code that should be appended, NOT whole code. "
"ex. test.py\nprint('hello world')\n "
"and the output will be last 3 lines.",
)
def append(self, inputs: str) -> str:
try:
code = CodeWriter.append(inputs)
output = "Last 3 line was:\n" + "\n".join(code.split("\n")[-3:])
except Exception as e:
output = str(e)
logger.debug(
f"\nProcessed CodeEditor.APPEND, Input: {inputs} "
f"Output Answer: {output}"
)
return output
@tool(
name="CodeEditor.WRITE",
description="Write code to create a new tool. "
"If the code is completed, use the Terminal tool to execute it, if not, append the code through the CodeEditor.APPEND tool. "
"Input should be formatted like: "
"<filename>\n<code>\n\n"
"Here is an example: "
"test.py\nmessage = 'hello world'\nprint(message)\n"
"\n"
"The output will be last 3 lines you wrote.",
)
def write(self, inputs: str) -> str:
try:
code = CodeWriter.write(inputs.lstrip())
output = "Last 3 line was:\n" + "\n".join(code.split("\n")[-3:])
except Exception as e:
output = str(e)
logger.debug(
f"\nProcessed CodeEditor.WRITE, Input: {inputs} " f"Output Answer: {output}"
)
return output
# @tool(
# name="CodeEditor.PATCH",
# description="Patch the code to correct the error if an error occurs or to improve it. "
# "Input is a list of patches. The patch is separated by {seperator}. ".format(
# seperator=CodePatcher.separator.replace("\n", "\\n")
# )
# + "Each patch has to be formatted like below.\n"
# "<filepath>|<start_line>,<start_col>|<end_line>,<end_col>|<new_code>"
# "Here is an example. If the original code is:\n"
# "print('hello world')\n"
# "and you want to change it to:\n"
# "print('hi corca')\n"
# "then the patch should be:\n"
# "test.py|1,8|1,19|hi corca\n"
# "Code between start and end will be replaced with new_code. "
# "The output will be written/deleted bytes or error message. ",
# )
def patch(self, patches: str) -> str:
try:
w, d = CodePatcher.patch(patches)
output = f"successfully wrote {w}, deleted {d}"
except Exception as e:
output = str(e)
logger.debug(
f"\nProcessed CodeEditor.PATCH, Input Patch: {patches} "
f"Output Answer: {output}"
)
return output
@tool(
name="CodeEditor.DELETE",
description="Delete code in file for a new start. "
"Input should be filename."
"ex. test.py "
"Output will be success or error message.",
)
def delete(self, inputs: str, filepath: str) -> str:
try:
with open(filepath, "w") as f:
f.write("")
output = "success"
except Exception as e:
output = str(e)
logger.debug(
f"\nProcessed CodeEditor.DELETE, Input filename: {inputs} "
f"Output Answer: {output}"
)
return output
###################### EDITOR// INIT.PY END

@ -0,0 +1,22 @@
from swarms.utils.logger import logger
from swarms.agents.tools.base import BaseToolSet, tool, SessionGetter, ToolScope
class ExitConversation(BaseToolSet):
@tool(
name="Exit Conversation",
description="A tool to exit the conversation. "
"Use this when you want to exit the conversation. "
"The input should be a message that the conversation is over.",
scope=ToolScope.SESSION,
)
def exit(self, message: str, get_session: SessionGetter) -> str:
"""Run the tool."""
_, executor = get_session()
del executor
logger.debug("\nProcessed ExitConversation.")
return message

@ -0,0 +1,24 @@
######################## ######################################################## file system
from langchain.agents.agent_toolkits import FileManagementToolkit
from tempfile import TemporaryDirectory
# We'll make a temporary directory to avoid clutter
working_directory = TemporaryDirectory()
toolkit = FileManagementToolkit(
root_dir=str(working_directory.name)
) # If you don't provide a root_dir, operations will default to the current working directory
toolkit.get_tools()
file_management_tools = FileManagementToolkit(
root_dir=str(working_directory.name),
selected_tools=["read_file", "write_file", "list_directory"],
).get_tools()
read_tool, write_tool, list_tool = file_management_tools
write_tool.run({"file_path": "example.txt", "text": "Hello World!"})
# List files in the working directory
list_tool.run({})

File diff suppressed because it is too large Load Diff

@ -0,0 +1,262 @@
import os
import uuid
import numpy as np
import torch
from diffusers import (
EulerAncestralDiscreteScheduler,
StableDiffusionInpaintPipeline,
StableDiffusionInstructPix2PixPipeline,
StableDiffusionPipeline,
)
from PIL import Image
from transformers import (
BlipForConditionalGeneration,
BlipForQuestionAnswering,
BlipProcessor,
CLIPSegForImageSegmentation,
CLIPSegProcessor,
)
from swarms.agents.prompts.prompts import IMAGE_PROMPT
from swarms.agents.tools.base import tool
from swarms.agents.tools.main import BaseToolSet
from swarms.utils.logger import logger
from swarms.utils.main import BaseHandler, get_new_image_name
class MaskFormer(BaseToolSet):
def __init__(self, device):
print("Initializing MaskFormer to %s" % device)
self.device = device
self.processor = CLIPSegProcessor.from_pretrained("CIDAS/clipseg-rd64-refined")
self.model = CLIPSegForImageSegmentation.from_pretrained(
"CIDAS/clipseg-rd64-refined"
).to(device)
def inference(self, image_path, text):
threshold = 0.5
min_area = 0.02
padding = 20
original_image = Image.open(image_path)
image = original_image.resize((512, 512))
inputs = self.processor(
text=text, images=image, padding="max_length", return_tensors="pt"
).to(self.device)
with torch.no_grad():
outputs = self.model(**inputs)
mask = torch.sigmoid(outputs[0]).squeeze().cpu().numpy() > threshold
area_ratio = len(np.argwhere(mask)) / (mask.shape[0] * mask.shape[1])
if area_ratio < min_area:
return None
true_indices = np.argwhere(mask)
mask_array = np.zeros_like(mask, dtype=bool)
for idx in true_indices:
padded_slice = tuple(
slice(max(0, i - padding), i + padding + 1) for i in idx
)
mask_array[padded_slice] = True
visual_mask = (mask_array * 255).astype(np.uint8)
image_mask = Image.fromarray(visual_mask)
return image_mask.resize(original_image.size)
class ImageEditing(BaseToolSet):
def __init__(self, device):
print("Initializing ImageEditing to %s" % device)
self.device = device
self.mask_former = MaskFormer(device=self.device)
self.revision = "fp16" if "cuda" in device else None
self.torch_dtype = torch.float16 if "cuda" in device else torch.float32
self.inpaint = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
revision=self.revision,
torch_dtype=self.torch_dtype,
).to(device)
@tool(
name="Remove Something From The Photo",
description="useful when you want to remove and object or something from the photo "
"from its description or location. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the object need to be removed. ",
)
def inference_remove(self, inputs):
image_path, to_be_removed_txt = inputs.split(",")
return self.inference_replace(f"{image_path},{to_be_removed_txt},background")
@tool(
name="Replace Something From The Photo",
description="useful when you want to replace an object from the object description or "
"location with another object from its description. "
"The input to this tool should be a comma separated string of three, "
"representing the image_path, the object to be replaced, the object to be replaced with ",
)
def inference_replace(self, inputs):
image_path, to_be_replaced_txt, replace_with_txt = inputs.split(",")
original_image = Image.open(image_path)
original_size = original_image.size
mask_image = self.mask_former.inference(image_path, to_be_replaced_txt)
updated_image = self.inpaint(
prompt=replace_with_txt,
image=original_image.resize((512, 512)),
mask_image=mask_image.resize((512, 512)),
).images[0]
updated_image_path = get_new_image_name(
image_path, func_name="replace-something"
)
updated_image = updated_image.resize(original_size)
updated_image.save(updated_image_path)
logger.debug(
f"\nProcessed ImageEditing, Input Image: {image_path}, Replace {to_be_replaced_txt} to {replace_with_txt}, "
f"Output Image: {updated_image_path}"
)
return updated_image_path
class InstructPix2Pix(BaseToolSet):
def __init__(self, device):
print("Initializing InstructPix2Pix to %s" % device)
self.device = device
self.torch_dtype = torch.float16 if "cuda" in device else torch.float32
self.pipe = StableDiffusionInstructPix2PixPipeline.from_pretrained(
"timbrooks/instruct-pix2pix",
safety_checker=None,
torch_dtype=self.torch_dtype,
).to(device)
self.pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(
self.pipe.scheduler.config
)
@tool(
name="Instruct Image Using Text",
description="useful when you want to the style of the image to be like the text. "
"like: make it look like a painting. or make it like a robot. "
"The input to this tool should be a comma separated string of two, "
"representing the image_path and the text. ",
)
def inference(self, inputs):
"""Change style of image."""
logger.debug("===> Starting InstructPix2Pix Inference")
image_path, text = inputs.split(",")[0], ",".join(inputs.split(",")[1:])
original_image = Image.open(image_path)
image = self.pipe(
text, image=original_image, num_inference_steps=40, image_guidance_scale=1.2
).images[0]
updated_image_path = get_new_image_name(image_path, func_name="pix2pix")
image.save(updated_image_path)
logger.debug(
f"\nProcessed InstructPix2Pix, Input Image: {image_path}, Instruct Text: {text}, "
f"Output Image: {updated_image_path}"
)
return updated_image_path
class Text2Image(BaseToolSet):
def __init__(self, device):
print("Initializing Text2Image to %s" % device)
self.device = device
self.torch_dtype = torch.float16 if "cuda" in device else torch.float32
self.pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", torch_dtype=self.torch_dtype
)
self.pipe.to(device)
self.a_prompt = "best quality, extremely detailed"
self.n_prompt = (
"longbody, lowres, bad anatomy, bad hands, missing fingers, extra digit, "
"fewer digits, cropped, worst quality, low quality"
)
@tool(
name="Generate Image From User Input Text",
description="useful when you want to generate an image from a user input text and save it to a file. "
"like: generate an image of an object or something, or generate an image that includes some objects. "
"The input to this tool should be a string, representing the text used to generate image. ",
)
def inference(self, text):
image_filename = os.path.join("image", str(uuid.uuid4())[0:8] + ".png")
prompt = text + ", " + self.a_prompt
image = self.pipe(prompt, negative_prompt=self.n_prompt).images[0]
image.save(image_filename)
logger.debug(
f"\nProcessed Text2Image, Input Text: {text}, Output Image: {image_filename}"
)
return image_filename
class VisualQuestionAnswering(BaseToolSet):
def __init__(self, device):
print("Initializing VisualQuestionAnswering to %s" % device)
self.torch_dtype = torch.float16 if "cuda" in device else torch.float32
self.device = device
self.processor = BlipProcessor.from_pretrained("Salesforce/blip-vqa-base")
self.model = BlipForQuestionAnswering.from_pretrained(
"Salesforce/blip-vqa-base", torch_dtype=self.torch_dtype
).to(self.device)
@tool(
name="Answer Question About The Image",
description="useful when you need an answer for a question based on an image. "
"like: what is the background color of the last image, how many cats in this figure, what is in this figure. "
"The input to this tool should be a comma separated string of two, representing the image_path and the question",
)
def inference(self, inputs):
image_path, question = inputs.split(",")
raw_image = Image.open(image_path).convert("RGB")
inputs = self.processor(raw_image, question, return_tensors="pt").to(
self.device, self.torch_dtype
)
out = self.model.generate(**inputs)
answer = self.processor.decode(out[0], skip_special_tokens=True)
logger.debug(
f"\nProcessed VisualQuestionAnswering, Input Image: {image_path}, Input Question: {question}, "
f"Output Answer: {answer}"
)
return answer
class ImageCaptioning(BaseHandler):
def __init__(self, device):
print("Initializing ImageCaptioning to %s" % device)
self.device = device
self.torch_dtype = torch.float16 if "cuda" in device else torch.float32
self.processor = BlipProcessor.from_pretrained(
"Salesforce/blip-image-captioning-base"
)
self.model = BlipForConditionalGeneration.from_pretrained(
"Salesforce/blip-image-captioning-base", torch_dtype=self.torch_dtype
).to(self.device)
def handle(self, filename: str):
img = Image.open(filename)
width, height = img.size
ratio = min(512 / width, 512 / height)
width_new, height_new = (round(width * ratio), round(height * ratio))
img = img.resize((width_new, height_new))
img = img.convert("RGB")
img.save(filename, "PNG")
print(f"Resize image form {width}x{height} to {width_new}x{height_new}")
inputs = self.processor(Image.open(filename), return_tensors="pt").to(
self.device, self.torch_dtype
)
out = self.model.generate(**inputs)
description = self.processor.decode(out[0], skip_special_tokens=True)
print(
f"\nProcessed ImageCaptioning, Input Image: {filename}, Output Text: {description}"
)
return IMAGE_PROMPT.format(filename=filename, description=description)

@ -0,0 +1,39 @@
import requests
from bs4 import BeautifulSoup
from swarms.agents.tools.base import BaseToolSet
from swarms.utils.logger import logger
from swarms.agents.tools.base import tool
class RequestsGet(BaseToolSet):
@tool(
name="Requests Get",
description="A portal to the internet. "
"Use this when you need to get specific content from a website."
"Input should be a url (i.e. https://www.google.com)."
"The output will be the text response of the GET request.",
)
def get(self, url: str) -> str:
"""Run the tool."""
html = requests.get(url).text
soup = BeautifulSoup(html)
non_readable_tags = soup.find_all(
["script", "style", "header", "footer", "form"]
)
for non_readable_tag in non_readable_tags:
non_readable_tag.extract()
content = soup.get_text("\n", strip=True)
if len(content) > 300:
content = content[:300] + "..."
logger.debug(
f"\nProcessed RequestsGet, Input Url: {url} " f"Output Contents: {content}"
)
return content
Loading…
Cancel
Save