From 1c4f0d8ad5306e7914a2eef4f836f64efb887a3d Mon Sep 17 00:00:00 2001 From: Kye Date: Fri, 22 Dec 2023 21:59:04 -0500 Subject: [PATCH] [CLEANUP] [TESTS] --- swarms/models/openai_assistant.py | 74 ------- tests/models/test_hf.py | 283 ++++++++++++++++++------- tests/{swarms => structs}/test_base.py | 2 +- 3 files changed, 205 insertions(+), 154 deletions(-) delete mode 100644 swarms/models/openai_assistant.py rename tests/{swarms => structs}/test_base.py (99%) diff --git a/swarms/models/openai_assistant.py b/swarms/models/openai_assistant.py deleted file mode 100644 index 6d0c518f..00000000 --- a/swarms/models/openai_assistant.py +++ /dev/null @@ -1,74 +0,0 @@ -from typing import Dict, List, Optional -from dataclass import dataclass - -from swarms.models import OpenAI - - -@dataclass -class OpenAIAssistant: - name: str = "OpenAI Assistant" - instructions: str = None - tools: List[Dict] = None - model: str = None - openai_api_key: str = None - temperature: float = 0.5 - max_tokens: int = 100 - stop: List[str] = None - echo: bool = False - stream: bool = False - log: bool = False - presence: bool = False - dashboard: bool = False - debug: bool = False - max_loops: int = 5 - stopping_condition: Optional[str] = None - loop_interval: int = 1 - retry_attempts: int = 3 - retry_interval: int = 1 - interactive: bool = False - dynamic_temperature: bool = False - state: Dict = None - response_filters: List = None - response_filter: Dict = None - response_filter_name: str = None - response_filter_value: str = None - response_filter_type: str = None - response_filter_action: str = None - response_filter_action_value: str = None - response_filter_action_type: str = None - response_filter_action_name: str = None - client = OpenAI() - role: str = "user" - instructions: str = None - - def create_assistant(self, task: str): - assistant = self.client.create_assistant( - name=self.name, - instructions=self.instructions, - tools=self.tools, - model=self.model, - ) - return assistant - - def create_thread(self): - thread = self.client.beta.threads.create() - return thread - - def add_message_to_thread(self, thread_id: str, message: str): - message = self.client.beta.threads.add_message( - thread_id=thread_id, role=self.user, content=message - ) - return message - - def run(self, task: str): - run = self.client.beta.threads.runs.create( - thread_id=self.create_thread().id, - assistant_id=self.create_assistant().id, - instructions=self.instructions, - ) - - out = self.client.beta.threads.runs.retrieve( - thread_id=run.thread_id, run_id=run.id - ) - - return out diff --git a/tests/models/test_hf.py b/tests/models/test_hf.py index dce13338..f94e915a 100644 --- a/tests/models/test_hf.py +++ b/tests/models/test_hf.py @@ -1,90 +1,215 @@ -import pytest import torch -from unittest.mock import Mock -from swarms.models.huggingface import HuggingFaceLLM - - -@pytest.fixture -def mock_torch(): - return Mock() - - -@pytest.fixture -def mock_autotokenizer(): - return Mock() +import logging +from unittest.mock import patch +import pytest -@pytest.fixture -def mock_automodelforcausallm(): - return Mock() +from swarms.models.huggingface import HuggingfaceLLM +# Mock some functions and objects for testing @pytest.fixture -def mock_bitsandbytesconfig(): - return Mock() - - -@pytest.fixture -def hugging_face_llm( - mock_torch, - mock_autotokenizer, - mock_automodelforcausallm, - mock_bitsandbytesconfig, -): - HuggingFaceLLM.torch = mock_torch - HuggingFaceLLM.AutoTokenizer = mock_autotokenizer - HuggingFaceLLM.AutoModelForCausalLM = mock_automodelforcausallm - HuggingFaceLLM.BitsAndBytesConfig = mock_bitsandbytesconfig - - return HuggingFaceLLM(model_id="test") - - -def test_init( - hugging_face_llm, mock_autotokenizer, mock_automodelforcausallm -): - assert hugging_face_llm.model_id == "test" - mock_autotokenizer.from_pretrained.assert_called_once_with("test") - mock_automodelforcausallm.from_pretrained.assert_called_once_with( - "test", quantization_config=None +def mock_huggingface_llm(monkeypatch): + # Mock the model and tokenizer creation + def mock_init( + self, + model_id, + device="cpu", + max_length=500, + quantize=False, + quantization_config=None, + verbose=False, + distributed=False, + decoding=False, + max_workers=5, + repitition_penalty=1.3, + no_repeat_ngram_size=5, + temperature=0.7, + top_k=40, + top_p=0.8, + ): + pass + + # Mock the model loading + def mock_load_model(self): + pass + + # Mock the model generation + def mock_run(self, task): + pass + + monkeypatch.setattr(HuggingfaceLLM, "__init__", mock_init) + monkeypatch.setattr(HuggingfaceLLM, "load_model", mock_load_model) + monkeypatch.setattr(HuggingfaceLLM, "run", mock_run) + + +# Basic tests for initialization and attribute settings +def test_init_huggingface_llm(): + llm = HuggingfaceLLM( + model_id="test_model", + device="cuda", + max_length=1000, + quantize=True, + quantization_config={"config_key": "config_value"}, + verbose=True, + distributed=True, + decoding=True, + max_workers=3, + repitition_penalty=1.5, + no_repeat_ngram_size=4, + temperature=0.8, + top_k=50, + top_p=0.7, ) - -def test_init_with_quantize( - hugging_face_llm, - mock_autotokenizer, - mock_automodelforcausallm, - mock_bitsandbytesconfig, -): - quantization_config = { - "load_in_4bit": True, - "bnb_4bit_use_double_quant": True, + assert llm.model_id == "test_model" + assert llm.device == "cuda" + assert llm.max_length == 1000 + assert llm.quantize == True + assert llm.quantization_config == {"config_key": "config_value"} + assert llm.verbose == True + assert llm.distributed == True + assert llm.decoding == True + assert llm.max_workers == 3 + assert llm.repitition_penalty == 1.5 + assert llm.no_repeat_ngram_size == 4 + assert llm.temperature == 0.8 + assert llm.top_k == 50 + assert llm.top_p == 0.7 + + +# Test loading the model +def test_load_model(mock_huggingface_llm): + llm = HuggingfaceLLM(model_id="test_model") + llm.load_model() + + # Ensure that the load_model function is called + assert True + + +# Test running the model +def test_run(mock_huggingface_llm): + llm = HuggingfaceLLM(model_id="test_model") + result = llm.run("Test prompt") + + # Ensure that the run function is called + assert True + + +# Test for setting max_length +def test_llm_set_max_length(llm_instance): + new_max_length = 1000 + llm_instance.set_max_length(new_max_length) + assert llm_instance.max_length == new_max_length + +# Test for setting verbose +def test_llm_set_verbose(llm_instance): + llm_instance.set_verbose(True) + assert llm_instance.verbose is True + +# Test for setting distributed +def test_llm_set_distributed(llm_instance): + llm_instance.set_distributed(True) + assert llm_instance.distributed is True + +# Test for setting decoding +def test_llm_set_decoding(llm_instance): + llm_instance.set_decoding(True) + assert llm_instance.decoding is True + +# Test for setting max_workers +def test_llm_set_max_workers(llm_instance): + new_max_workers = 10 + llm_instance.set_max_workers(new_max_workers) + assert llm_instance.max_workers == new_max_workers + +# Test for setting repitition_penalty +def test_llm_set_repitition_penalty(llm_instance): + new_repitition_penalty = 1.5 + llm_instance.set_repitition_penalty(new_repitition_penalty) + assert llm_instance.repitition_penalty == new_repitition_penalty + +# Test for setting no_repeat_ngram_size +def test_llm_set_no_repeat_ngram_size(llm_instance): + new_no_repeat_ngram_size = 6 + llm_instance.set_no_repeat_ngram_size(new_no_repeat_ngram_size) + assert llm_instance.no_repeat_ngram_size == new_no_repeat_ngram_size + +# Test for setting temperature +def test_llm_set_temperature(llm_instance): + new_temperature = 0.8 + llm_instance.set_temperature(new_temperature) + assert llm_instance.temperature == new_temperature + +# Test for setting top_k +def test_llm_set_top_k(llm_instance): + new_top_k = 50 + llm_instance.set_top_k(new_top_k) + assert llm_instance.top_k == new_top_k + +# Test for setting top_p +def test_llm_set_top_p(llm_instance): + new_top_p = 0.9 + llm_instance.set_top_p(new_top_p) + assert llm_instance.top_p == new_top_p + +# Test for setting quantize +def test_llm_set_quantize(llm_instance): + llm_instance.set_quantize(True) + assert llm_instance.quantize is True + +# Test for setting quantization_config +def test_llm_set_quantization_config(llm_instance): + new_quantization_config = { + "load_in_4bit": False, + "bnb_4bit_use_double_quant": False, "bnb_4bit_quant_type": "nf4", "bnb_4bit_compute_dtype": torch.bfloat16, } - mock_bitsandbytesconfig.return_value = quantization_config - - HuggingFaceLLM(model_id="test", quantize=True) - - mock_bitsandbytesconfig.assert_called_once_with( - **quantization_config - ) - mock_autotokenizer.from_pretrained.assert_called_once_with("test") - mock_automodelforcausallm.from_pretrained.assert_called_once_with( - "test", quantization_config=quantization_config - ) - - -def test_generate_text(hugging_face_llm): - prompt_text = "test prompt" - expected_output = "test output" - hugging_face_llm.tokenizer.encode.return_value = torch.tensor( - [0] - ) # Mock tensor - hugging_face_llm.model.generate.return_value = torch.tensor( - [0] - ) # Mock tensor - hugging_face_llm.tokenizer.decode.return_value = expected_output - - output = hugging_face_llm.generate_text(prompt_text) - - assert output == expected_output + llm_instance.set_quantization_config(new_quantization_config) + assert llm_instance.quantization_config == new_quantization_config + +# Test for setting model_id +def test_llm_set_model_id(llm_instance): + new_model_id = "EleutherAI/gpt-neo-2.7B" + llm_instance.set_model_id(new_model_id) + assert llm_instance.model_id == new_model_id + +# Test for setting model +@patch("swarms.models.huggingface.AutoModelForCausalLM.from_pretrained") +def test_llm_set_model(mock_model, llm_instance): + mock_model.return_value = "mocked model" + llm_instance.set_model(mock_model) + assert llm_instance.model == "mocked model" + +# Test for setting tokenizer +@patch("swarms.models.huggingface.AutoTokenizer.from_pretrained") +def test_llm_set_tokenizer(mock_tokenizer, llm_instance): + mock_tokenizer.return_value = "mocked tokenizer" + llm_instance.set_tokenizer(mock_tokenizer) + assert llm_instance.tokenizer == "mocked tokenizer" + +# Test for setting logger +def test_llm_set_logger(llm_instance): + new_logger = logging.getLogger("test_logger") + llm_instance.set_logger(new_logger) + assert llm_instance.logger == new_logger + +# Test for saving model +@patch("torch.save") +def test_llm_save_model(mock_save, llm_instance): + llm_instance.save_model("path/to/save") + mock_save.assert_called_once() + +# Test for print_dashboard +@patch("builtins.print") +def test_llm_print_dashboard(mock_print, llm_instance): + llm_instance.print_dashboard("test task") + mock_print.assert_called() + +# Test for __call__ method +@patch("swarms.models.huggingface.HuggingfaceLLM.run") +def test_llm_call(mock_run, llm_instance): + mock_run.return_value = "mocked output" + result = llm_instance("test task") + assert result == "mocked output" \ No newline at end of file diff --git a/tests/swarms/test_base.py b/tests/structs/test_base.py similarity index 99% rename from tests/swarms/test_base.py rename to tests/structs/test_base.py index 9641ed7e..8b54dec0 100644 --- a/tests/swarms/test_base.py +++ b/tests/structs/test_base.py @@ -1,7 +1,7 @@ import pytest import os from datetime import datetime -from swarms.swarms.base import BaseStructure +from swarms.structs.base import BaseStructure class TestBaseStructure: