# Integrating the Agent Class with Memory Systems in the Swarms Memory Framework
# Integrating the Agent Class with Memory Systems/RAG in the Swarms Memory Framework
## Introduction
In this guide, we will cover how to integrate various memory systems from the Swarms Memory framework into an agent class. The Swarms Memory framework allows for the integration of different database-backed memory systems, enabling agents to retain and query long-term knowledge effectively. We'll walk through examples of integrating with Pinecone, ChromaDB, and Faiss, showcasing how to configure custom functions and embed memory functionality into an agent class.
In this guide, we will cover how to integrate various memory systems from the Swarms Memory framework into an agent class. The Swarms Memory framework allows for the integration of different database-backed memory systems, enabling agents to retain and query long-term knowledge effectively. We'll walk through examples of integrating with Pinecone, ChromaDB, and Faiss, showcasing how to configure custom functions and embed memory functionality into an agent class.
@ -9,499 +7,9 @@ In this guide, we will cover how to integrate various memory systems from the Sw
First, you need to install the Swarms Memory package:
First, you need to install the Swarms Memory package:
```bash
```bash
$ pip install swarms-memory
$ pip install swarms swarms-memory
```
## Usage Examples
### Integrating Pinecone with the Agent Class
The next step is to implement the abstract methods defined in the `BaseVectorDatabase` class. These methods provide the core functionality for interacting with your vector database, such as connecting, querying, and performing CRUD operations.
```python
from swarms import BaseVectorDatabase
class MyCustomVectorDatabase(BaseVectorDatabase):
def __init__(self, *args, **kwargs):
# Custom initialization logic
pass
def connect(self):
# Implementation for connecting to the vector database
pass
def close(self):
# Implementation for closing the vector database connection
pass
def query(self, query: str):
# Implementation for executing a query on the vector database
pass
def fetch_all(self):
# Implementation for fetching all rows from the result set
pass
def fetch_one(self):
# Implementation for fetching a single row from the result set
pass
def add(self, doc: str):
# Implementation for adding a new record to the vector database
pass
def get(self, query: str):
# Implementation for retrieving a record from the vector database
pass
def update(self, doc):
# Implementation for updating a record in the vector database
pass
def delete(self, message):
# Implementation for deleting a record from the vector database
pass
```
In this example, we define placeholders for each of the abstract methods within the `MyCustomVectorDatabase` class. These placeholders will be replaced with the actual implementation logic specific to your chosen vector database solution.
### Step 3: Choose and Integrate Your Vector Database Solution
With the foundational structure in place, it's time to choose a specific vector database solution and integrate it into your custom implementation. In this guide, we'll explore several popular vector database solutions, including PostgreSQL, Pinecone, Chroma, FAISS, and more, providing examples and guidance on how to integrate them seamlessly.
### PostgreSQL Integration
PostgreSQL is a powerful open-source relational database management system that supports vector data types and operations, making it a viable choice for building custom vector memory databases.
```python
import psycopg2
from swarms import BaseVectorDatabase
class PostgreSQLVectorDatabase(MyCustomVectorDatabase):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
# PostgreSQL connection details
self.conn = psycopg2.connect(
host="localhost",
database="vector_db",
user="postgres",
password="your_password"
)
self.cur = self.conn.cursor()
def connect(self):
# PostgreSQL connection logic
pass
def close(self):
# Close PostgreSQL connection
self.cur.close()
self.conn.close()
def query(self, query: str):
# Execute PostgreSQL query
self.cur.execute(query)
def fetch_all(self):
# Fetch all rows from PostgreSQL result set
return self.cur.fetchall()
# Implement other abstract methods
```
In this example, we define a `PostgreSQLVectorDatabase` class that inherits from `MyCustomVectorDatabase`. Within the `__init__` method, we establish a connection to a PostgreSQL database using the `psycopg2` library. We then implement the `connect()`, `close()`, `query()`, and `fetch_all()` methods specific to PostgreSQL.
### Pinecone Integration
Pinecone is a managed vector database service that provides efficient storage, retrieval, and manipulation of high-dimensional vector data.
```python
import pinecone
from swarms import BaseVectorDatabase
class PineconeVectorDatabase(MyCustomVectorDatabase):
In this example, we define a `PineconeVectorDatabase` class that inherits from `MyCustomVectorDatabase`. Within the `__init__` method, we initialize the Pinecone client and create an index. We then implement the `query()` and `add()` methods specific to the Pinecone API.
### Chroma Integration
Chroma is an open-source vector database library that provides efficient storage, retrieval, and manipulation of vector data using various backends, including DuckDB, Chromadb, and more.
```python
import logging
import os
import uuid
from typing import Optional
import chromadb
from dotenv import load_dotenv
from swarms.utils.data_to_text import data_to_text
from swarms.utils.markdown_message import display_markdown_message
from swarms_memory import BaseVectorDatabase
# Load environment variables
load_dotenv()
# Results storage using local ChromaDB
class ChromaDB(BaseVectorDatabase):
"""
ChromaDB database
Args:
metric (str): The similarity metric to use.
output (str): The name of the collection to store the results in.
limit_tokens (int, optional): The maximum number of tokens to use for the query. Defaults to 1000.
n_results (int, optional): The number of results to retrieve. Defaults to 2.
f" {self.collection.name} with metric: {self.metric} and"
f" output directory: {self.output_dir}"
)
# If docs
if docs_folder:
display_markdown_message(
f"Traversing directory: {docs_folder}"
)
self.traverse_directory()
def add(
self,
document: str,
*args,
**kwargs,
):
"""
Add a document to the ChromaDB collection.
Args:
document (str): The document to be added.
condition (bool, optional): The condition to check before adding the document. Defaults to True.
Returns:
str: The ID of the added document.
"""
try:
doc_id = str(uuid.uuid4())
self.collection.add(
ids=[doc_id],
documents=[document],
*args,
**kwargs,
)
print("-----------------")
print("Document added successfully")
print("-----------------")
return doc_id
except Exception as e:
raise Exception(f"Failed to add document: {str(e)}")
def query(
self,
query_text: str,
*args,
**kwargs,
):
"""
Query documents from the ChromaDB collection.
Args:
query (str): The query string.
n_docs (int, optional): The number of documents to retrieve. Defaults to 1.
Returns:
dict: The retrieved documents.
"""
try:
docs = self.collection.query(
query_texts=[query_text],
n_results=self.n_results,
*args,
**kwargs,
)["documents"]
return docs[0]
except Exception as e:
raise Exception(f"Failed to query documents: {str(e)}")
def traverse_directory(self):
"""
Traverse through every file in the given directory and its subdirectories,
and return the paths of all files.
Parameters:
- directory_name (str): The name of the directory to traverse.
Returns:
- list: A list of paths to each file in the directory and its subdirectories.
"""
added_to_db = False
for root, dirs, files in os.walk(self.docs_folder):
for file in files:
file = os.path.join(self.docs_folder, file)
_, ext = os.path.splitext(file)
data = data_to_text(file)
added_to_db = self.add(str(data))
print(f"{file} added to Database")
return added_to_db
```
```
In this example, we define a `ChromaDB` class that inherits from `MyCustomVectorDatabase`. Within the `__init__` method, we create a Chroma client and get or create a collection. We then implement the `query()` and `add()` methods specific to the Chroma API.
### FAISS Integration
FAISS (Facebook AI Similarity Search) is a library for efficient similarity search and clustering of dense vectors, developed by Meta AI.
```python
import faiss
class FAISSVectorDatabase(MyCustomVectorDatabase):