From 20a994b62fbce78055739ba723291bb8bd470c11 Mon Sep 17 00:00:00 2001 From: Kye Gomez Date: Sun, 16 Jun 2024 14:59:23 -0700 Subject: [PATCH] [CLEANUP] --- docs/mkdocs.yml | 6 +- swarms/agents/__init__.py | 2 - swarms/agents/developer_agents.py | 136 ------------------------------ swarms/agents/omni_modal_agent.py | 100 ---------------------- swarms/agents/simple_agent.py | 105 ----------------------- 5 files changed, 3 insertions(+), 346 deletions(-) delete mode 100644 swarms/agents/developer_agents.py delete mode 100644 swarms/agents/omni_modal_agent.py delete mode 100644 swarms/agents/simple_agent.py diff --git a/docs/mkdocs.yml b/docs/mkdocs.yml index 16b6d2e2..663831af 100644 --- a/docs/mkdocs.yml +++ b/docs/mkdocs.yml @@ -1,8 +1,8 @@ docs_dir: '.' # replace with the correct path if your documentation files are not in the same directory as mkdocs.yml -site_name: Swarms Documentation -site_url: https://swarms.apac.ai +site_name: Swarms +site_url: https://docs.swarms.world site_author: Swarms -site_description: Orchestrate Swarms of Agents From Any Framework Like OpenAI, Langchain, and Etc for Real World Workflow Automation. +site_description: The Enterprise-Grade Production-Ready Multi-Agent Framework repo_name: kyegomez/swarms repo_url: https://github.com/kyegomez/swarms edit_uri: https://github.com/kyegomez/swarms/tree/main/docs diff --git a/swarms/agents/__init__.py b/swarms/agents/__init__.py index b213748e..e5481f1d 100644 --- a/swarms/agents/__init__.py +++ b/swarms/agents/__init__.py @@ -1,7 +1,5 @@ from swarms.agents.agent_wrapper import agent_wrapper from swarms.agents.base import AbstractAgent -from swarms.agents.omni_modal_agent import OmniModalAgent -from swarms.agents.simple_agent import SimpleAgent from swarms.agents.stopping_conditions import ( check_cancelled, check_complete, diff --git a/swarms/agents/developer_agents.py b/swarms/agents/developer_agents.py deleted file mode 100644 index 4392af03..00000000 --- a/swarms/agents/developer_agents.py +++ /dev/null @@ -1,136 +0,0 @@ -from swarms.prompts.documentation import DOCUMENTATION_WRITER_SOP -from swarms.prompts.tests import TEST_WRITER_SOP_PROMPT -from swarms.structs.agent import Agent - - -class UnitTesterAgent: - """ - This class represents a unit testing agent responsible for generating unit tests for the swarms package. - - Attributes: - - llm: The low-level model used by the agent. - - agent_name (str): The name of the agent. - - agent_description (str): The description of the agent. - - max_loops (int): The maximum number of loops the agent can run. - - SOP_PROMPT: The system output prompt used by the agent. - - agent: The underlying agent object used for running tasks. - - Methods: - - run(task: str, *args, **kwargs) -> str: Run the agent with the given task and return the response. - """ - - def __init__( - self, - llm, - agent_name: str = "Unit Testing Agent", - agent_description: str = "This agent is responsible for generating unit tests for the swarms package.", - max_loops: int = 1, - sop: str = None, - module: str = None, - path: str = None, - autosave: bool = True, - *args, - **kwargs, - ): - super().__init__() - self.llm = llm - self.agent_name = agent_name - self.agent_description = agent_description - self.max_loops = max_loops - self.sop = sop - self.module = module - self.path = path - self.autosave = autosave - - self.agent = Agent( - llm=llm, - agent_name=agent_name, - agent_description=agent_description, - autosave=self.autosave, - system_prompt=agent_description, - max_loops=max_loops, - *args, - **kwargs, - ) - - def run(self, task: str, module: str, path: str, *args, **kwargs): - """ - Run the agent with the given task. - - Args: - - task (str): The task to run the agent with. - - Returns: - - str: The response from the agent. - """ - return self.agent.run( - TEST_WRITER_SOP_PROMPT(task, self.module, self.path), - *args, - **kwargs, - ) - - -class DocumentorAgent: - """ - This class represents a documentor agent responsible for generating unit tests for the swarms package. - - Attributes: - - llm: The low-level model used by the agent. - - agent_name (str): The name of the agent. - - agent_description (str): The description of the agent. - - max_loops (int): The maximum number of loops the agent can run. - - SOP_PROMPT: The system output prompt used by the agent. - - agent: The underlying agent object used for running tasks. - - Methods: - - run(task: str, *args, **kwargs) -> str: Run the agent with the given task and return the response. - """ - - def __init__( - self, - llm, - agent_name: str = "Documentor Agent", - agent_description: str = "This agent is responsible for generating unit tests for the swarms package.", - max_loops: int = 1, - sop: str = None, - module: str = None, - path: str = None, - autosave: bool = True, - *args, - **kwargs, - ): - super().__init__(*args, **kwargs) - self.llm = llm - self.agent_name = agent_name - self.agent_description = agent_description - self.max_loops = max_loops - self.sop = sop - self.module = module - self.path = path - self.autosave = autosave - - self.agent = Agent( - llm=llm, - agent_name=agent_name, - agent_description=agent_description, - autosave=self.autosave, - system_prompt=agent_description, - max_loops=max_loops, - *args, - **kwargs, - ) - - def run(self, task: str, module: str, path: str, *args, **kwargs): - """ - Run the agent with the given task. - - Args: - - task (str): The task to run the agent with. - - Returns: - - str: The response from the agent. - """ - return self.agent.run( - DOCUMENTATION_WRITER_SOP(task, self.module) * args, - **kwargs, - ) diff --git a/swarms/agents/omni_modal_agent.py b/swarms/agents/omni_modal_agent.py deleted file mode 100644 index 90d0ce28..00000000 --- a/swarms/agents/omni_modal_agent.py +++ /dev/null @@ -1,100 +0,0 @@ -from langchain.base_language import BaseLanguageModel -from langchain_experimental.autonomous_agents.hugginggpt.repsonse_generator import ( - load_response_generator, -) -from langchain_experimental.autonomous_agents.hugginggpt.task_executor import ( - TaskExecutor, -) -from langchain_experimental.autonomous_agents.hugginggpt.task_planner import ( - load_chat_planner, -) -from transformers import load_tool - -from swarms.structs.agent import Agent -from swarms.utils.loguru_logger import logger - - -class OmniModalAgent(Agent): - """ - OmniModalAgent - LLM -> Plans -> Tasks -> Tools -> Response - - Architecture: - 1. LLM: Language Model - 2. Chat Planner: Plans - 3. Task Executor: Tasks - 4. Tools: Tools - - Args: - llm (BaseLanguageModel): Language Model - tools (List[BaseTool]): List of tools - - Returns: - str: response - - Usage: - from swarms import OmniModalAgent, OpenAIChat, - - llm = OpenAIChat() - agent = OmniModalAgent(llm) - response = agent.run("Hello, how are you? Create an image of how your are doing!") - """ - - def __init__( - self, - llm: BaseLanguageModel, - verbose: bool = False, - *args, - **kwargs, - ): - super().__init__(llm=llm, *args, **kwargs) - self.llm = llm - self.verbose = verbose - - print("Loading tools...") - self.tools = [ - load_tool(tool_name) - for tool_name in [ - "document-question-answering", - "image-captioning", - "image-question-answering", - "image-segmentation", - "speech-to-text", - "summarization", - "text-classification", - "text-question-answering", - "translation", - "huggingface-tools/text-to-image", - "huggingface-tools/text-to-video", - "text-to-speech", - "huggingface-tools/text-download", - "huggingface-tools/image-transformation", - ] - ] - - # Load the chat planner and response generator - self.chat_planner = load_chat_planner(llm) - self.response_generator = load_response_generator(llm) - self.task_executor = TaskExecutor - self.history = [] - - def run(self, task: str) -> str: - """Run the OmniAgent""" - try: - plan = self.chat_planner.plan( - inputs={ - "input": task, - "hf_tools": self.tools, - } - ) - self.task_executor = TaskExecutor(plan) - self.task_executor.run() - - response = self.response_generator.generate( - {"task_execution": self.task_executor} - ) - - return response - except Exception as error: - logger.error(f"Error running the agent: {error}") - return f"Error running the agent: {error}" diff --git a/swarms/agents/simple_agent.py b/swarms/agents/simple_agent.py deleted file mode 100644 index f8fef0e2..00000000 --- a/swarms/agents/simple_agent.py +++ /dev/null @@ -1,105 +0,0 @@ -import importlib -import pkgutil -from typing import Any - -import swarms.models -from swarms.models.base_llm import BaseLLM -from swarms.structs.conversation import Conversation - - -def get_llm_by_name(name: str): - """ - Searches all the modules exported from the 'swarms.models' path for a class with the given name. - - Args: - name (str): The name of the class to search for. - - Returns: - type: The class with the given name, or None if no such class is found. - """ - for importer, modname, ispkg in pkgutil.iter_modules( - swarms.models.__path__ - ): - module = importlib.import_module(f"swarms.models.{modname}") - if hasattr(module, name): - return getattr(module, name) - return None - - -# Run the language model in a loop for n iterations -def SimpleAgent( - llm: BaseLLM = None, iters: Any = "automatic", *args, **kwargs -): - """ - A simple agent that interacts with a language model. - - Args: - llm (BaseLLM): The language model to use for generating responses. - iters (Any): The number of iterations or "automatic" to run indefinitely. - *args: Additional positional arguments to pass to the language model. - **kwargs: Additional keyword arguments to pass to the language model. - - Raises: - Exception: If the language model is not defined or cannot be found. - - Returns: - None - """ - try: - if llm is None: - raise Exception("Language model not defined") - - if isinstance(llm, str): - llm = get_llm_by_name(llm) - if llm is None: - raise Exception(f"Language model {llm} not found") - llm = llm(*args, **kwargs) - except Exception as error: - print(f"[ERROR][SimpleAgent] {error}") - raise error - - try: - conv = Conversation(*args, **kwargs) - if iters == "automatic": - i = 0 - while True: - user_input = input("\033[91mUser:\033[0m ") - conv.add("user", user_input) - if user_input.lower() == "quit": - break - task = ( - conv.return_history_as_string() - ) # Get the conversation history - out = llm(task, *args, **kwargs) - conv.add("assistant", out) - print( - f"\033[94mAssistant:\033[0m {out}", - ) - conv.display_conversation() - conv.export_conversation("conversation.txt") - i += 1 - else: - for i in range(iters): - user_input = input("\033[91mUser:\033[0m ") - conv.add("user", user_input) - if user_input.lower() == "quit": - break - task = ( - conv.return_history_as_string() - ) # Get the conversation history - out = llm(task, *args, **kwargs) - conv.add("assistant", out) - print( - f"\033[94mAssistant:\033[0m {out}", - ) - conv.display_conversation() - conv.export_conversation("conversation.txt") - - except Exception as error: - print(f"[ERROR][SimpleAgentConversation] {error}") - raise error - - except KeyboardInterrupt: - print("[INFO][SimpleAgentConversation] Keyboard interrupt") - conv.export_conversation("conversation.txt") - raise KeyboardInterrupt